MHD code using multi graphical processing units: SMAUG

被引:1
|
作者
Gyenge, N. [1 ,2 ,4 ]
Griffiths, M. K. [1 ,3 ]
Erdelyi, R. [1 ,4 ]
机构
[1] Univ Sheffield, Sch Math & Stat, SP2RC, Solar Phys & Space Plasmas Res Ctr, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
[2] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Debrecen Heliophys Observ DHO, Konkoly Observ, POB 30, H-4010 Debrecen, Hungary
[3] Univ Sheffield, Corp Informat & Comp Serv, 10-12 Brunswick St, Sheffield S10 2FN, S Yorkshire, England
[4] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary
基金
英国科学技术设施理事会;
关键词
Numerical simulations; Magnetohydrodynamics; Graphical processing units; Sheffield advanced code; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; GRAVITATIONALLY-STRATIFIED MEDIA; ASTROPHYSICAL FLOWS; HYDRODYNAMIC ALGORITHMS; SIMULATIONS; TESTS; ZEUS-2D; SYSTEMS;
D O I
10.1016/j.asr.2017.10.027
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 x 1000, 2044 x 2044, 4000 x 4000 and 8000 x 8000. We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems. (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条
  • [1] A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
    Griffiths, M. K.
    Fedun, V.
    Erdelyi, R.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2015, 36 (01) : 197 - 223
  • [2] A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
    M. K. Griffiths
    V. Fedun
    R. Erdélyi
    Journal of Astrophysics and Astronomy, 2015, 36 : 197 - 223
  • [3] Optimization of a FDTD Code for Graphical Processing Units
    Sypek, Piotr
    Mrozowski, Michal
    2008 MIKON CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2008, : 812 - 814
  • [4] FDTD calculations using graphical processing units
    Inman, MJ
    Elsherbeni, AZ
    Smith, CE
    2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005, : 728 - 731
  • [5] Hyperspectral Processing in Graphical Processing Units
    Winter, Michael E.
    Winter, Edwin M.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
  • [6] Simulating spiking neural networks on massively parallel graphical processing units using a code generation approach with GeNN
    Esin Yavuz
    James Turner
    Thomas Nowotny
    BMC Neuroscience, 15 (Suppl 1)
  • [7] Accelerating direct quantum dynamics using graphical processing units
    Penfold, T. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (30) : 19601 - 19608
  • [8] Graphical Processing Units for Quantum Chemistry
    Ufimtsev, Ivan S.
    Martinez, Todd J.
    COMPUTING IN SCIENCE & ENGINEERING, 2008, 10 (06) : 26 - 34
  • [9] Graphical processing units and scientific applications
    Di Martino, Beniamino
    Mehofer, Eduard
    Quinlan, Dan
    Schordan, Markus
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2012, 26 (03): : 189 - 191
  • [10] Automated Code Engine for Graphical Processing Units: Application to the Effective Core Potential Integrals and Gradients
    Song, Chenchen
    Wang, Lee-Ping
    Martinez, Todd J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (01) : 92 - 106