MHD code using multi graphical processing units: SMAUG

被引:1
|
作者
Gyenge, N. [1 ,2 ,4 ]
Griffiths, M. K. [1 ,3 ]
Erdelyi, R. [1 ,4 ]
机构
[1] Univ Sheffield, Sch Math & Stat, SP2RC, Solar Phys & Space Plasmas Res Ctr, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
[2] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Debrecen Heliophys Observ DHO, Konkoly Observ, POB 30, H-4010 Debrecen, Hungary
[3] Univ Sheffield, Corp Informat & Comp Serv, 10-12 Brunswick St, Sheffield S10 2FN, S Yorkshire, England
[4] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary
基金
英国科学技术设施理事会;
关键词
Numerical simulations; Magnetohydrodynamics; Graphical processing units; Sheffield advanced code; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; GRAVITATIONALLY-STRATIFIED MEDIA; ASTROPHYSICAL FLOWS; HYDRODYNAMIC ALGORITHMS; SIMULATIONS; TESTS; ZEUS-2D; SYSTEMS;
D O I
10.1016/j.asr.2017.10.027
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 x 1000, 2044 x 2044, 4000 x 4000 and 8000 x 8000. We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems. (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条
  • [21] Quantum Monte Carlo on graphical processing units
    Anderson, Amos G.
    Goddard, William A., III
    Schroeder, Peter
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (03) : 298 - 306
  • [22] Accelerating Brain Simulations on Graphical Processing Units
    Kayraklioglu, Engin
    El-Ghazawi, Tarek
    Bozkus, Zeki
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 556 - 560
  • [23] Boys function evaluation on graphical processing units
    Grzegorz Mazur
    Marcin Makowski
    Roman Łazarski
    Journal of Mathematical Chemistry, 2016, 54 : 2022 - 2047
  • [24] Boys function evaluation on graphical processing units
    Mazur, Grzegorz
    Makowski, Marcin
    Lazarski, Roman
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (10) : 2022 - 2047
  • [25] Multiconfigurational quantum chemistry on graphical processing units
    Hohenstein, Edward
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [26] Electronic structure calculations on graphical processing units
    Gordon, Mark S.
    Windus, Theresa L.
    Bode, Brett M.
    Felder, Jacob
    Asadchev, Andrey
    Allada, Veerendra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [27] Using graphical processing units to solve the multidimensional Ginzburg-Landau equation
    Aleksic, Branislav
    Aleksic, Najdan
    Skarka, Vladimir
    Belic, Milivoj
    PHYSICA SCRIPTA, 2012, T149
  • [28] Solution of relativistic quantum optics problems using clusters of graphical processing units
    Gordon, D. F.
    Hafizi, B.
    Helle, M. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 50 - 62
  • [29] PARALLEL IMPLEMENTATION OF ENDMEMBER EXTRACTION ALGORITHMS USING NVIDIA GRAPHICAL PROCESSING UNITS
    Plaza, Antonio
    Plaza, Javier
    Sanchez, Sergio
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3633 - 3636
  • [30] Multidisciplinary simulation acceleration using multiple shared memory graphical processing units
    Kemal, Jonathan Y.
    Davis, Roger L.
    Owens, John D.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2016, 30 (04): : 486 - 508