Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity: a nested cohort study

被引:10
|
作者
Wang, Zheng [1 ]
Groen, Henk [2 ]
Van Zomeren, Koen C. [1 ]
Cantineau, Astrid E. P. [1 ]
Van Oers, Anne [1 ]
Van Montfoort, Aafke P. A. [3 ]
Kuchenbecker, Walter K. H. [4 ]
Pelinck, Marie J. [5 ]
Broekmans, Frank J. M. [6 ]
Klijn, Nicole F. [7 ]
Kaaijk, Eugenie M. [8 ]
Mol, Ben W. J. [9 ]
Hoek, Annemieke [1 ]
Van Echten-Arends, Jannie [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Obstet & Gynecol, Hanzepl 1, NL-9713 GZ Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[3] Maastricht Univ, GROW Sch Oncol & Dev Biol, Dept Obstet & Gynecol, Med Ctr, Maastricht, Netherlands
[4] Isala Clin, Dept Obstet & Gynecol, Zwolle, Netherlands
[5] Treant Zorggrp, Dept Obstet & Gynecol, Emmen, Netherlands
[6] Univ Utrecht, Univ Med Ctr Utrecht, Dept Reprod Med & Gynecol, Div Women & Baby, Utrecht, Netherlands
[7] Leiden Univ, Leiden Univ Med Ctr, Dept Gynecol & Reprod Med, Leiden, Netherlands
[8] Onze Lieve Vrouwe Gasthuis OLVG, Dept Obstet & Gynecol, Amsterdam, Netherlands
[9] Monash Univ, Dept Obstet & Gynecol, Clayton, Vic, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
obesity; lifestyle intervention; embryo quality; embryo utilization rate; cumulative live birth rate; IN-VITRO FERTILIZATION; BODY-MASS INDEX; PREGNANCY OUTCOMES; MATERNAL OBESITY; GENE-EXPRESSION; OOCYTE QUALITY; DIET; ASSOCIATION; CYCLES; FETAL;
D O I
10.1093/hropen/hoab032
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
STUDY QUESTION: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? SUMMARY ANSWER: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. WHAT IS KNOWN ALREADY: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. STUDY DESIGN, SIZE, DURATION: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). PARTICIPANTS/MATERIALS, SETTING, METHODS: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: The overall mean age was 31.6 years and the mean BMI was 35.4 +/- 3.2 kg/m(2) in the intervention group, and 34.9 +/- 2.9 kg/m(2) in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: -3.14, 95% CI: -5.73 to -0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: -8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94-1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43-2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. LIMITATIONS, REASONS FOR CAUTION: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. WIDER IMPLICATIONS OF THE FINDINGS: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] DOES SERUM ESTRADIOL LEVELS PRIOR TO PROGESTERONE ADMINISTRATION IN PROGRAMMED FROZEN EMBRYO TRANSFER CYCLE IMPACTS LIVE BIRTH RATE ?: A PROSPECTIVE COHORT STUDY.
    Singh, Neeta
    Malhotra, Neena
    Bakkireddy, Saisree
    Mahey, Reeta
    Kumari, Supriya
    Saini, Monika
    FERTILITY AND STERILITY, 2024, 122 (04) : E302 - E303
  • [22] Vaginal microbiota profile at the time of embryo transfer does not affect live birth rate in IVF cycles with donated oocytes
    Vergaro, Paula
    Tiscornia, Gustavo
    Barragan, Montserrat
    Garcia, Desiree
    Rodriguez, Amelia
    Santalo, Josep
    Vassena, Rita
    REPRODUCTIVE BIOMEDICINE ONLINE, 2019, 38 (06) : 883 - 891
  • [23] Administration of depot GnRH agonist prior to programmed frozen-thawed embryo transfer does not improve the live birth rate in ovulatory women: A large, multi-center retrospective study
    Wu, Hongbo
    Wei, Fu
    Tan, Weihong
    Dong, Mei
    Tan, Ying
    Zhang, Xiqian
    Song, Ge
    Liu, Liling
    MEDICINE, 2022, 101 (40) : E30991
  • [24] Does preimplantation genetic testing for aneuploidy really improve IVF outcomes in advanced maternal age patients without compromising cumulative live-birth rate?
    Raoul Orvieto
    Journal of Assisted Reproduction and Genetics, 2020, 37 : 159 - 159
  • [25] Does preimplantation genetic testing for aneuploidy really improve IVF outcomes in advanced maternal age patients without compromising cumulative live-birth rate?
    Orvieto, Raoul
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2020, 37 (01) : 159 - 159
  • [26] Vitrif-augmentation: cumulative live birth rate per oocyte retrieval at first IVF cycle in a single embryo transfer policy
    Guillaume, A.
    Poirier, V.
    Guyomard, N.
    Bonne, S.
    Ohl, J.
    Bettahar, K.
    Rongieres, C.
    Schindler, L.
    Feger, B.
    Moreau, L.
    Spizzo, M.
    Lichtblau, I.
    Pirrello, O.
    HUMAN REPRODUCTION, 2015, 30 : 242 - 243
  • [27] Cumulative live birth rate and perinatal outcomes comparing women with freeze-all embryo transfers and women with fresh and subsequent frozen embryo transfers
    Wang, Y. A.
    Li, Z.
    Johnson, L.
    Hammarberg, K.
    Bowman, M.
    Farquhar, C.
    Safi, N.
    Sullivan, E.
    HUMAN REPRODUCTION, 2016, 31 : 109 - 109
  • [28] Impact of Gonadotropin-Releasing Hormone Agonist Pre-treatment on the Cumulative Live Birth Rate in Infertile Women With Adenomyosis Treated With IVF/ICSI: A Retrospective Cohort Study
    Chen, Minghui
    Luo, Lu
    Wang, Qiong
    Gao, Jun
    Chen, Yuqing
    Zhang, Yingying
    Zhou, Canquan
    FRONTIERS IN ENDOCRINOLOGY, 2020, 11
  • [29] Endometriosis and cumulative live birth rate after fresh and frozen IVF cycles with single embryo transfer in young women: no impact beyond reduced ovarian sensitivity—a case control study
    Michael Feichtinger
    Emelie Nordenhök
    Jan I. Olofsson
    Nermin Hadziosmanovic
    Kenny A. Rodriguez-Wallberg
    Journal of Assisted Reproduction and Genetics, 2019, 36 : 1649 - 1656
  • [30] The Optimal Number of Oocytes Retrieved From PCOS Patients Receiving IVF to Obtain Associated With Maximum Cumulative Live Birth Rate and Live Birth After Fresh Embryo Transfer
    Jia, Rui
    Liu, Yuanyuan
    Jiang, Rulan
    Zhu, Xuli
    Zhou, Liang
    Chen, Peipei
    Cao, Mingya
    Zhao, Zhiming
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13