Conformational landscape of isolated capped amino acids: on the nature of non-covalent interactions

被引:3
|
作者
Gonzalez, Jorge [1 ]
Martinez, Rodrigo [2 ]
Fernandez, Jose A. [1 ]
Millan, Judith [2 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Quim Fis, UPV EHU, Barrio Sarriena S-N, E-48940 Leioa, Spain
[2] Univ La Rioja, Fac Ciencia & Tecnol, Dept Quim, Madre Dios 53, Logrono 26006, Spain
来源
EUROPEAN PHYSICAL JOURNAL D | 2017年 / 71卷 / 08期
关键词
MOLECULAR-ORBITAL METHODS; ISOLEUCINE-N-METHYLAMIDE; GAUSSIAN-TYPE BASIS; GAS-PHASE; AB-INITIO; SECONDARY STRUCTURES; DENSITY FUNCTIONALS; ASPARAGINE; CONFORMERS; PROPENSITIES;
D O I
10.1140/epjd/e2017-80187-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The intramolecular interactions for isolated capped amino acids were investigated computationally by characterizing the conformers for selected amino acids with charged (arginine), polar (asparagine and glutamine), non-polar (alanine, valine and isoleucine), and aromatic (phenylalanine, tryptophan and tyrosine) side chains. The computational method applied combined a molecular mechanics conformational search (with an MMFFs forced field) followed by structural and vibrational density-functional calculations (M06-2X with a triple-zeta Pople's basis set). The intramolecular forces in each amino acid were analyzed with the Non-Covalent Interactions (NCI) analysis. The results for the 15 most stable conformers studied showed that the structure of isolated capped amino acids resembles those found in proteins. In particular, the two most stable conformers of the nine amino acids investigated exhibit gamma(L) and beta(L) conformations with 7- and 5-membered rings, respectively, as a result of the balance between non-covalent interactions (hydrogen bonds and van der Waals).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Probing Non-Covalent Complexes of Glutathione with D-Amino Acids by Mass Spectrometry
    Chu Yan-Qiu
    Pan Ting-Ting
    Dai Zhao-Yun
    Yu Zhuo-Wei
    Zheng Son-Bai
    Ding Chuan-Fan
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (11) : 1981 - 1987
  • [42] Exploiting non-covalent π interactions for catalyst design
    Neel, Andrew J.
    Hilton, Margaret J.
    Sigman, Matthew S.
    Toste, F. Dean
    NATURE, 2017, 543 (7647) : 637 - 646
  • [43] A methodological analysis for the assessment of non-covalent π interactions
    Quinonero, David
    Estarellas, Carolina
    Frontera, Antonio
    Deya, Pere M.
    CHEMICAL PHYSICS LETTERS, 2011, 508 (1-3) : 144 - 148
  • [44] Small Molecules, Non-Covalent Interactions, and Confinement
    Buntkowsky, Gerd
    Vogel, Michael
    MOLECULES, 2020, 25 (14):
  • [45] Non-covalent interactions in small thiophene clusters
    Malloum, Alhadji
    Conradie, Jeanet
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 347
  • [46] Molecular balances for quantifying non-covalent interactions
    Mati, Ioulia K.
    Cockroft, Scott L.
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) : 4195 - 4205
  • [47] A benchmark for non-covalent interactions in organometallic crystals
    Miron, Jose Eduardo Zamudio Diaz
    Stein, Matthias
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (48) : 29338 - 29349
  • [48] Non-covalent interactions – QTAIM and NBO analysis
    Sławomir J. Grabowski
    Journal of Molecular Modeling, 2013, 19 : 4713 - 4721
  • [49] Genotoxicity of non-covalent interactions: DNA intercalators
    Ferguson, Lynnette R.
    Denny, William A.
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2007, 623 (1-2) : 14 - 23
  • [50] Potential energy surfaces of non-covalent interactions
    Ringer, Ashley L.
    Tauer, Tony P.
    Sinnokrot, Mutasem O.
    Lively, Ryan P.
    Sherrill, C. David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231