The effects of wettability on the flow pattern and rising gas velocity of gas-liquid two-phase flow in vertical pipe

被引:0
|
作者
Fukushi, K [1 ]
Iguchi, M [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
关键词
wettability; flow pattern; slug; bubble; rising velocity; jet;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In the steelmaking processes the wall material is chosen to be poorly wetted by molten steel to prevent contamination of the molten steel. Information on gas-liquid two-phase flows in a poorly wetted pipe however is very limited. In this water model study the flow pattern, the rising velocities of slugs and bubbles, and liquid flow near the outlet of the pipe were experimentally investigated. The shape and size of bubbles and slugs were affected by the wettability, but the boundary between the slug flow and bubbly flow regimes was not sensitive to the wettability. The rising velocities of bubbles and slugs became higher in the poorly wetted pipe than in the wetted pipe for a low water flow rate. At the outlet of the poorly wetted pipe, periodic generation of small bubbles was observed. The liquid flow near the outlet was measured with particle image velocimetry (PIV). The poorly wetted pipe promoted the horizontal spread of the liquid flow issuing from it.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [41] A simplified model of gas-liquid two-phase flow pattern transition
    Ito, Koji
    Inoue, Mitsuru
    Ozawa, Mamoru
    Shoji, Masahiro
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2004, 70 (689): : 151 - 158
  • [42] INFLUENCE OF GAS PROPERTIES ON GAS-LIQUID TWO-PHASE FLOW
    Saito, Miki
    Kanai, Taizo
    Nishimura, Satoshi
    Nishi, Yoshihisa
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 3, 2020,
  • [43] Flow structure of gas-liquid two-phase flow in an annulus
    Ozar, B.
    Jeong, J. J.
    Dixit, A.
    Julia, J. E.
    Hibiki, T.
    Ishiia, M.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (15) : 3998 - 4011
  • [44] On intermittent flow characteristics of gas-liquid two-phase flow
    Thaker, Jignesh
    Banerjee, Jyotirmay
    NUCLEAR ENGINEERING AND DESIGN, 2016, 310 : 363 - 377
  • [45] EFFECT OF VOID FRACTION ON PRESSURE DROP IN UPWARD VERTICAL TWO-PHASE GAS-LIQUID PIPE FLOW
    Tang, Clement C.
    Tiwari, Sanjib
    Ghajar, Afshin J.
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 3, 2012, : 751 - 759
  • [46] Experimental Study on the Frictional Resistance of gas-liquid two-phase Flow in Vertical Helically Coiled Pipe
    Zheng Shuihua
    Mu Jiegang
    Li Jia
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2758 - 2761
  • [47] Effect of mixed fine particles on the characteristics of gas-liquid two-phase slug flow in a vertical pipe
    Minagawa, Hisato
    Shakutsui, Hideaki
    Naito, Etsuro
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003, 69 (681): : 1134 - 1139
  • [48] Effect of Void Fraction on Pressure Drop in Upward Vertical Two-Phase Gas-Liquid Pipe Flow
    Tang, Clement C.
    Tiwari, Sanjib
    Ghajar, Afshin J.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (02):
  • [49] Prediction of Gas-Liquid Two-phase Flow Rates through a Vertical Pipe Based on Thermal Diffusion
    Guo, Wei
    Wang, Li
    Liu, Chuanping
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (06) : 2686 - 2697
  • [50] Study on pressure drop models of gas-liquid two-phase pipe flow in gas reservoir
    Liao, Kaigui
    Li, Yingchuan
    Yang, Zhi
    Zhang, Haiquan
    Shiyou Xuebao/Acta Petrolei Sinica, 2009, 30 (04): : 607 - 612