Submillimeter MR fingerprinting using deep learning-based tissue quantification

被引:29
|
作者
Fang, Zhenghan [1 ,2 ,3 ]
Chen, Yong [1 ,2 ]
Hung, Sheng-Che [1 ,2 ]
Zhang, Xiaoxia [1 ,2 ]
Lin, Weili [1 ,2 ]
Shen, Dinggang [1 ,2 ,4 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27515 USA
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
基金
美国国家卫生研究院;
关键词
deep learning; MR fingerprinting; pediatric imaging; quantitative imaging; RECONSTRUCTION; BRAIN; T2;
D O I
10.1002/mrm.28136
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To develop a rapid 2D MR fingerprinting technique with a submillimeter in-plane resolution using a deep learning-based tissue quantification approach. Methods A rapid and high-resolution MR fingerprinting technique was developed for brain T-1 and T-2 quantification. The 2D acquisition was performed using a FISP-based MR fingerprinting sequence and a spiral trajectory with 0.8-mm in-plane resolution. A deep learning-based method was used to replace the standard template matching method for improved tissue characterization. A novel network architecture (i.e., residual channel attention U-Net) was proposed to improve high-resolution details in the estimated tissue maps. Quantitative brain imaging was performed with 5 adults and 2 pediatric subjects, and the performance of the proposed approach was compared with several existing methods in the literature. Results In vivo measurements with both adult and pediatric subjects show that high-quality T-1 and T-2 mapping with 0.8-mm in-plane resolution can be achieved in 7.5 seconds per slice. The proposed deep learning method outperformed existing algorithms in tissue quantification with improved accuracy. Compared with the standard U-Net, high-resolution details in brain tissues were better preserved by the proposed residual channel attention U-Net. Experiments on pediatric subjects further demonstrated the potential of the proposed technique for fast pediatric neuroimaging. Alongside reduced data acquisition time, a 5-fold acceleration in tissue property mapping was also achieved with the proposed method. Conclusion A rapid and high-resolution MR fingerprinting technique was developed, which enables high-quality T-1 and T-2 quantification with 0.8-mm in-plane resolution in 7.5 seconds per slice.
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [21] A Reliability Quantification Method for Deep Reinforcement Learning-Based Control
    Yoshioka, Hitoshi
    Hashimoto, Hirotada
    ALGORITHMS, 2024, 17 (07)
  • [22] Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology
    Bouteldja, Nassim
    Klinkhammer, Barbara M.
    Buelow, Roman D.
    Droste, Patrick
    Otten, Simon W.
    Freifrau von Stillfried, Saskia
    Moellmann, Julia
    Sheehan, Susan M.
    Korstanje, Ron
    Menzel, Sylvia
    Bankhead, Peter
    Mietsch, Matthias
    Drummer, Charis
    Lehrke, Michael
    Kramann, Rafael
    Floege, Juergen
    Boor, Peter
    Merhof, Dorit
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01): : 52 - 68
  • [23] Deep Learning-based Osteocyte Identification And Quantification In Histological Images
    Lee, S.
    Childs, H. R.
    Tzoc-Pacheco, E.
    Anang, Y. Naa Ardua
    Doty, S. B.
    Lu, H. H.
    TISSUE ENGINEERING PART A, 2023, 29 (9-10)
  • [24] Deep learning-based detection and quantification of weed seed mixtures
    Ahmed, Shahbaz
    Revolinski, Samuel R.
    Maughan, P. Weston
    Savic, Marija
    Kalin, Jessica
    Burke, Ian C.
    WEED SCIENCE, 2024,
  • [25] Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides
    Christian Marzahl
    Marc Aubreville
    Christof A. Bertram
    Jason Stayt
    Anne-Katherine Jasensky
    Florian Bartenschlager
    Marco Fragoso-Garcia
    Ann K. Barton
    Svenja Elsemann
    Samir Jabari
    Jens Krauth
    Prathmesh Madhu
    Jörn Voigt
    Jenny Hill
    Robert Klopfleisch
    Andreas Maier
    Scientific Reports, 10
  • [26] Deep Learning-based Quantification of Anterior Segment OCT Parameters
    Soh, Zhi Da
    Tan, Mingrui
    Nongpiur, Monisha Esther
    Yu, Marco
    Qian, Chaoxu
    Tham, Yih Chung
    Koh, Victor
    Aung, Tin
    Xu, Xinxing
    Liu, Yong
    Cheng, Ching-Yu
    OPHTHALMOLOGY SCIENCE, 2024, 4 (01):
  • [27] Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides
    Marzahl, Christian
    Aubreville, Marc
    Bertram, Christof A.
    Stayt, Jason
    Jasensky, Anne-Katherine
    Bartenschlager, Florian
    Fragoso-Garcia, Marco
    Barton, Ann K.
    Elsemann, Svenja
    Jabari, Samir
    Krauth, Jens
    Madhu, Prathmesh
    Voigt, Joern
    Hill, Jenny
    Klopfleisch, Robert
    Maier, Andreas
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [28] Deep learning-based uncertainty quantification of groundwater level predictions
    Vahid Nourani
    Kasra Khodkar
    Nardin Jabbarian Paknezhad
    Patrick Laux
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 3081 - 3107
  • [29] A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Taher, Fatma
    Alghamdi, Norah Saleh
    Ghazal, Mohammed
    Beache, Garth
    Mohamed, Tamer
    Keynton, Robert
    El-Baz, Ayman
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 81
  • [30] A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images
    Abdeltawab H.
    Khalifa F.
    Taher F.
    Alghamdi N.S.
    Ghazal M.
    Beache G.
    Mohamed T.
    Keynton R.
    El-Baz A.
    Computerized Medical Imaging and Graphics, 2020, 81