Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study

被引:52
|
作者
Piccirillo, C. [1 ]
Pullar, R. C. [2 ]
Costa, E. [3 ]
Santos-Silva, A. [3 ]
Pintado, M. M. E. [1 ]
Castro, P. M. L. [1 ]
机构
[1] Univ Catolica Portuguesa, Escola Super Biotecnol, Lab Associado, Ctr Biotecnol & Quim Fina, Porto, Portugal
[2] Univ Aveiro, Dept Engn Mat & Ceram CICECO, P-3810193 Aveiro, Portugal
[3] Univ Porto, Fac Farm, UCIBIO, P-4100 Porto, Portugal
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 51卷
关键词
Hydroxyapatite; Bioactivity; Haemolysis; Sintering; SUBSTITUTED HYDROXYAPATITE; SURFACE; OSTEOCONDUCTIVITY; EXTRACTION; APATITE; SODIUM; CELLS;
D O I
10.1016/j.msec.2015.03.020
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Single phase hydroxyapatite (HAp) and biphasic material hydroxyapatite/beta-tricalcium phosphate (HAp/beta-TCP) were obtained from a marine source (Atlantic cod fish bones). Here we report a study on the biological properties of these materials, including cytotoxicity, bioactivity and haemocompatibility. Results showed that the materials are not cytotoxic, neither in their powder nor in pellet form; indeed growth of Saos-2 cells was comparable to that of commercial. The haemolysis rate was lower than 2%; hence the materials can be classified as non-haemolytic. Moreover, when immersed in Simulated Body Fluid (SBF), crystal formation was observed on the surface of both materials. The sintering behaviour of the samples was also studied; both powders showed very high sinterability (density higher than 95% of the theoretical value). Overall, these results confirm the suitability of these materials for biomedical applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 315
页数:7
相关论文
共 50 条
  • [21] Hydroxyapatite-based coatings for intraosteal implants
    Kalita V.I.
    Komlev D.I.
    Komlev V.S.
    Fedotov A.Y.
    Radyuk A.A.
    Inorganic Materials: Applied Research, 2016, 7 (4) : 486 - 492
  • [22] Bone regeneration with hydroxyapatite-based biomaterials
    Zeynep Bal
    Takashi Kaito
    Feza Korkusuz
    Hideki Yoshikawa
    Emergent Materials, 2020, 3 : 521 - 544
  • [23] Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
    Réka Barabás
    Melinda Czikó
    Imre Dékány
    Liliana Bizo
    Erzsébet Sára Bogya
    Chemical Papers, 2013, 67 : 1414 - 1423
  • [24] Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
    Barabas, Reka
    Cziko, Melinda
    Dekany, Imre
    Bizo, Liliana
    Bogya, Erzsebet Sara
    CHEMICAL PAPERS, 2013, 67 (11) : 1414 - 1423
  • [25] Clinical Study of Hydroxyapatite-Based Eye Socket Filler in Surgery
    Su, Fanfan
    Chen, Yao
    Xu, Xiaohong
    SCIENCE OF ADVANCED MATERIALS, 2021, 13 (10) : 1969 - 1975
  • [26] In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties
    Ajdukovic, Zorica R.
    Mihajilov-Krstev, Tatjana M.
    Ignjatovic, Nenad L.
    Stojanovic, Zoran
    Mladenovic-Antic, Snezana B.
    Kocic, Branislava D.
    Najman, Stevo
    Petrovic, Nenad D.
    Uskokovic, Dragan P.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (02) : 1420 - 1428
  • [27] Arsenic removal by hydroxyapatite-based ceramics
    Nakahira, Atsushi
    Okajima, Toshihiro
    Honma, Tetsuo
    Yoshioka, Satoshi
    Tanaka, Isao
    CHEMISTRY LETTERS, 2006, 35 (08) : 856 - 857
  • [28] Bone regeneration with hydroxyapatite-based biomaterials
    Bal, Zeynep
    Kaito, Takashi
    Korkusuz, Feza
    Yoshikawa, Hideki
    EMERGENT MATERIALS, 2020, 3 (04) : 521 - 544
  • [29] THE PROCESSING OF HYDROXYAPATITE-BASED ROLLED SECTIONS
    KRAJEWSKI, A
    RAVAGLIOLI, A
    FIORI, C
    DALLACASA, R
    BIOMATERIALS, 1982, 3 (02) : 117 - 120
  • [30] Electrical characterization of hydroxyapatite-based bioceramics
    Gittings, J. P.
    Bowen, C. R.
    Dent, A. C. E.
    Turner, I. G.
    Baxter, F. R.
    Chaudhuri, J. B.
    ACTA BIOMATERIALIA, 2009, 5 (02) : 743 - 754