On permutation pattern classes with two restrictions only

被引:0
|
作者
Atkinson, M. D. [1 ]
机构
[1] Univ Otago, Dept Comp Sci, Dunedin 9054, New Zealand
关键词
permutation; pattern; growth rate;
D O I
10.1007/s00026-007-0320-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Permutation pattern classes that are defined by avoiding two permutations only and which contain only finitely many simple permutations are characterized and their growth rates are determined.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [21] Permutation classes and polyomino classes with excluded submatrices
    Battaglino, Daniela
    Bouvel, Mathilde
    Frosini, Andrea
    Rinaldi, Simone
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2017, 27 (02) : 157 - 183
  • [22] More classes of permutation quadrinomials from Niho exponents in characteristic two
    Zheng, Lijing
    Liu, Baixiang
    Kan, Haibin
    Peng, Jie
    Tang, Deng
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78
  • [23] Pattern characteristics of an evolution between two classes
    Cron, G
    Dubuisson, B
    FUZZY SETS AND SYSTEMS, 2002, 126 (03) : 293 - 310
  • [24] On some classes of permutation polynomials
    Akbary, Amir
    Alaric, Sean
    Wang, Qiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (01) : 121 - 133
  • [25] CHARACTERISTIC CLASSES FOR PERMUTATION REPRESENTATIONS
    SEGAL, GB
    STRETCH, CT
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1981, 90 (SEP) : 265 - 272
  • [26] Some classes of permutation pentanomials
    Ding, Zhiguo
    Zieve, Michael E.
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 106
  • [27] Wreath products of permutation classes
    Brignall, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [28] Permutation classes of polynomial growth
    Albert, M. H.
    Atkinson, M. D.
    Brignall, Robert
    ANNALS OF COMBINATORICS, 2007, 11 (3-4) : 249 - 264
  • [29] Expected Patterns in Permutation Classes
    Homberger, Cheyne
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [30] Permutation Classes of Polynomial Growth
    M. H. Albert
    M. D. Atkinson
    Robert Brignall
    Annals of Combinatorics, 2007, 11 : 249 - 264