An item orientated recommendation algorithm from the multi-view perspective

被引:24
|
作者
Hu, Qi-Ying [1 ,2 ,3 ]
Zhao, Zhi-Lin [1 ,2 ,3 ]
Wang, Chang-Dong [1 ,2 ,3 ]
Lai, Jian-Huang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Key Lab Informat Secur Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China
关键词
Recommendation algorithm; Item orientated; Multi-view learning;
D O I
10.1016/j.neucom.2016.12.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the traditional recommendation algorithms, items are recommended to users on the basis of users' preferences to improve selling efficiency, which however cannot always raise revenues for manufacturers of particular items. Assume that, a manufacturer has a limited budget for an item's advertisement, with this budget, it is only possible for him to market this item to limited users. How to select the most suitable users that will increase advertisement revenue? It seems to be an insurmountable problem to the existing recommendation algorithms. To address this issue, a new item orientated recommendation algorithm from the multi-view perspective is proposed in this paper. Different from the existing recommendation algorithms, this model provides the target items with the users that are the most possible to purchase them. The basic idea is to simultaneously calculate the relationships between items and the rating differences between users from a multi-view model in which the purchasing records of each user are regarded as a view and each record is seen as a node in a view. The experimental results show that our proposed method outperforms the state-of-the-art methods in the scenario of item orientated recommendation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 50 条
  • [21] Multi-view Graph Attention Network for Travel Recommendation
    Chen, Lei
    Cao, Jie
    Wang, Youquan
    Liang, Weichao
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [22] Explainable Recommendation through Attentive Multi-View Learning
    Gao, Jingyue
    Wang, Xiting
    Wang, Yasha
    Xie, Xing
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3622 - 3629
  • [23] Multi-view graph contrastive learning for social recommendation
    Chen, Rui
    Chen, Jialu
    Gan, Xianghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Factorization method for structure from perspective multi-view images
    Deguchi, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1998, E81D (11) : 1281 - 1289
  • [25] Integrating multi-view transmission system into MPEG-21 stereoscopic and multi-view DIA (Digital Item Adaptation)
    Lee, Seungwon
    Park, Ilkwon
    Kim, Manbae
    Byun, Hyeran
    MULTIMEDIA SYSTEMS AND APPLICATIONS IX, 2006, 6391
  • [26] Multi-view fusion for recommendation with attentive deep neural network
    Jing, Wang
    Sangaiah, Arun Kumar
    Wei, Liu
    Shaopeng, Liu
    Lei, Liu
    Ruishi, Liang
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2619 - 2629
  • [27] Knowledge-Aware Multi-view Contrastive Learning for Recommendation
    Xie, Xiang
    Xie, Zhenping
    Liu, Yuan
    Wang, Jia
    Zhan, Qianyi
    NEURAL PROCESSING LETTERS, 2025, 57 (02)
  • [28] Multi-view fusion for recommendation with attentive deep neural network
    Wang Jing
    Arun Kumar Sangaiah
    Liu Wei
    Liu Shaopeng
    Liu Lei
    Liang Ruishi
    Evolutionary Intelligence, 2022, 15 : 2619 - 2629
  • [29] Attribute mining multi-view contrastive learning network for recommendation
    Yuan, Xu
    Wu, Huinan
    Wang, Longfei
    Bu, Xiya
    Gao, Zhengnan
    Ma, Ruixin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 253
  • [30] Multi-view Contrastive Learning for Knowledge-Aware Recommendation
    Yu, Ruiguo
    Li, Zixuan
    Zhao, Mankun
    Zhang, Wenbin
    Yang, Ming
    Yu, Jian
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT V, 2024, 14451 : 211 - 223