Shape optimization for dynamic contact problems with friction

被引:0
|
作者
Myslinski, A [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
来源
关键词
dynamic unilateral problem; shape optimization; sensitivity analysis; necessary optimality condition;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and necessary optimality condition is formulated.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 50 条
  • [41] An evolutionary shape optimization procedure for contact problems in mechanical designs
    Li, W
    Li, Q
    Steven, GP
    Xie, YM
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2003, 217 (04) : 435 - 446
  • [42] Parallel Domain Decomposition Solvers for Contact Shape Optimization Problems
    Vondrak, V.
    Kozubek, T.
    Dostal, Z.
    Kabelikova, P.
    Horak, D.
    Markopoulos, A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [43] Topology optimization for compliance and contact pressure distribution in structural problems with friction
    Kristiansen, Hansotto
    Poulios, Konstantinos
    Aage, Niels
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 364 (364)
  • [44] PARAMETRIC QUADRATIC-PROGRAMMING METHOD FOR DYNAMIC CONTACT PROBLEMS WITH FRICTION
    SUN, SM
    TZOU, HS
    NATORI, MC
    AIAA JOURNAL, 1994, 32 (02) : 371 - 378
  • [45] On dynamic multi-rigid-body contact problems with Coulomb friction
    Trinkle, JC
    Pang, JS
    Sudarsky, S
    Lo, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 (04): : 267 - 279
  • [46] A NEW FINITE-ELEMENT TECHNIQUE FOR DYNAMIC CONTACT PROBLEMS WITH FRICTION
    CHEN, WH
    YEH, JT
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1988, 7 : 161 - 175
  • [47] Unilateral contact problems with a friction
    Gachechiladze, Avtandil
    Gachechiladze, Roland
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (03) : 363 - 375
  • [48] A direct shape optimization approach for contact problems with boundary stress concentration
    Ou, H.
    Lu, B.
    Cui, Z. S.
    Lin, C.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (09) : 2751 - 2759
  • [49] A direct shape optimization approach for contact problems with boundary stress concentration
    H. Ou
    B. Lu
    Z. S. Cui
    C. Lin
    Journal of Mechanical Science and Technology, 2013, 27 : 2751 - 2759
  • [50] Solution of dynamic frictional contact problems using nondifferentiable optimization
    Czekanski, A
    Meguid, SA
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2001, 43 (06) : 1369 - 1386