Genome-Wide Association Studies of Root-Related Traits in Brassica napus L. under Low-Potassium Conditions

被引:3
|
作者
Ibrahim, Sani [1 ,2 ]
Ahmad, Nazir [1 ]
Kuang, Lieqiong [1 ]
Tian, Ze [1 ]
Sadau, Salisu Bello [3 ]
Iqbal, Muhammad Shahid [3 ]
Wang, Xinfa [1 ]
Wang, Hanzhong [1 ]
Dun, Xiaoling [1 ]
机构
[1] Chinese Acad Agr Sci, Oil Crops Res Inst, Key Lab Biol & Genet Improvement Oil Crops, Minist Agr & Rural Affairs, Wuhan 430062, Peoples R China
[2] Bayero Univ, Coll Phys & Pharmaceut Sci, Fac Life Sci, Dept Plant Biol, PMB 3011, Kano 700006, Nigeria
[3] Chinese Acad Agr Sci ICR CAAS, Inst Cotton Res, State Key Lab Cotton Biol, Anyang 455000, Peoples R China
来源
PLANTS-BASEL | 2022年 / 11卷 / 14期
基金
中国国家自然科学基金;
关键词
rapeseed; ML-GWAS; root-related traits; candidate gene; QTN; EXPRESSION ANALYSIS; SYSTEM; ARABIDOPSIS; POPULATION; TOLERANCE; WHEAT; PREDICTION; RESISTANCE; NUTRITION; INCREASE;
D O I
10.3390/plants11141826
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Roots are essential organs for a plant's ability to absorb water and obtain mineral nutrients, hence they are critical to its development. Plants use root architectural alterations to improve their chances of absorbing nutrients when their supply is low. Nine root traits of a Brassica napus association panel were explored in hydroponic-system studies under low potassium (K) stress to unravel the genetic basis of root growth in rapeseed. The quantitative trait loci (QTL) and candidate genes for root development were discovered using a multilocus genome-wide association study (ML-GWAS). For the nine traits, a total of 453 significant associated single-nucleotide polymorphism (SNP) loci were discovered, which were then integrated into 206 QTL clusters. There were 45 pleiotropic clusters, and qRTA04-4 and qRTC04-7 were linked to TRL, TSA, and TRV at the same time, contributing 5.25-11.48% of the phenotypic variance explained (PVE) to the root traits. Additionally, 1360 annotated genes were discovered by examining genomic regions within 100 kb upstream and downstream of lead SNPs within the 45 loci. Thirty-five genes were identified as possibly regulating root-system development. As per protein-protein interaction analyses, homologs of three genes (BnaC08g29120D, BnaA07g10150D, and BnaC04g45700D) have been shown to influence root growth in earlier investigations. The QTL clusters and candidate genes identified in this work will help us better understand the genetics of root growth traits and could be employed in marker-assisted breeding for rapeseed adaptable to various conditions with low K levels.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses
    Tan, Min
    Liao, Fang
    Hou, Lintao
    Wang, Jia
    Wei, Lijuan
    Jian, Hongju
    Xu, Xinfu
    Li, Jiana
    Liu, Liezhao
    EUPHYTICA, 2017, 213 (02)
  • [42] Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses
    Min Tan
    Fang Liao
    Lintao Hou
    Jia Wang
    Lijuan Wei
    Hongju Jian
    Xinfu Xu
    Jiana Li
    Liezhao Liu
    Euphytica, 2017, 213
  • [43] Genome-Wide Association Study on Root Traits Under Different Growing Environments in Wheat (Triticum aestivum L.)
    Xu, Fengdan
    Chen, Shulin
    Yang, Xiwen
    Zhou, Sumei
    Wang, Junsen
    Zhang, Ziliang
    Huang, Yuan
    Song, Miao
    Zhang, Jun
    Zhan, Kehui
    He, Dexian
    FRONTIERS IN GENETICS, 2021, 12
  • [44] Genome-wide association study for frost tolerance in rapeseed/canola (Brassica napus) under simulating freezing conditions
    Wrucke, Danielle F.
    Talukder, Zahirul, I
    Rahman, Mukhlesur
    PLANT BREEDING, 2020, 139 (02) : 356 - 367
  • [45] Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus
    Xiaodong Wang
    Li Chen
    Aina Wang
    Hao Wang
    Jianhua Tian
    Xiaoping Zhao
    Hongbo Chao
    Yajun Zhao
    Weiguo Zhao
    Jun Xiang
    Jianping Gan
    Maoteng Li
    BMC Plant Biology, 16
  • [46] Genome wide association mapping and candidate gene mining for root architectural traits in rapeseed/canola (Brassica napus L.) at late growth stage
    Muhammad Arifuzzaman
    Mukhlesur Rahman
    Euphytica, 2020, 216
  • [47] Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus
    Wang, Xiaodong
    Chen, Li
    Wang, Aina
    Wang, Hao
    Tian, Jianhua
    Zhao, Xiaoping
    Chao, Hongbo
    Zhao, Yajun
    Zhao, Weiguo
    Xiang, Jun
    Gan, Jianping
    Li, Maoteng
    BMC PLANT BIOLOGY, 2016, 16
  • [48] Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus
    Zhang, Cuiping
    Gong, Ruolin
    Zhong, Hua
    Dai, Chunyan
    Zhang, Ru
    Dong, Jungang
    Li, Yangsheng
    Liu, Shuai
    Hu, Jihong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [49] Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.)
    Li, Hongge
    Zhang, Liping
    Hu, Jihong
    Zhang, Fugui
    Chen, Biyun
    Xu, Kun
    Gao, Guizhen
    Li, Hao
    Zhang, Tianyao
    Li, Zaiyun
    Wu, Xiaoming
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [50] Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.)
    Sun, Chengming
    Wang, Benqi
    Yan, Lei
    Hu, Kaining
    Liu, Sheng
    Zhou, Yongming
    Guan, Chunyun
    Zhang, Zhenqian
    Li, Jiana
    Zhang, Jiefu
    Chen, Song
    Wen, Jing
    Ma, Chaozhi
    Tu, Jinxing
    Shen, Jinxiong
    Fu, Tingdong
    Yi, Bin
    FRONTIERS IN PLANT SCIENCE, 2016, 7