Machine Learning Approach to Predict Sediment Load - A Case Study

被引:69
|
作者
Azamathulla, Hazi Md [1 ]
Ab Ghani, Aminuddin [1 ]
Chang, Chun Kiat [1 ]
Abu Hasan, Zorkeflee [1 ]
Zakaria, Nor Azazi [1 ]
机构
[1] Univ Sains Malaysia, River Engn & Urban Drainage Res Ctr REDAC, Nibong Tebal 14300, Pulau Pinang, Malaysia
关键词
Alluvial channels; River engineering; Sediment transport; Support vector machine; Total sediment load; SUPPORT VECTOR REGRESSION;
D O I
10.1002/clen.201000068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study a novel machine learning technique called the support vector machine (SVM) method is proposed as a new predictive model to predict sediment loads in three Malaysian rivers The SVM is employed without any restriction to an extensive database compiled from measurements in the Muda Langat and Kurau rivers The SVM technique demonstrated a superior performance compared to other traditional sediment load methods The coefficient of determination 0 958 and the mean square error 0 0698 of the SVM method are higher than those of the traditional method The performance of the SVM method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications
引用
收藏
页码:969 / 976
页数:8
相关论文
共 50 条
  • [41] Machine learning models to predict onset of dementia: A label learning approach
    Nori, Vijay S.
    Hane, Christopher A.
    Crown, William H.
    Au, Rhoda
    Burke, William J.
    Sanghavi, Darshak M.
    Bleicher, Paul
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) : 918 - 925
  • [42] Daily suspended sediment simulation using machine learning approach
    Kumar, Dheeraj
    Pandey, Ashish
    Sharma, Nayan
    Fluegel, Wolfgang-Albert
    CATENA, 2016, 138 : 77 - 90
  • [43] Learning Machine Learning: A Case Study
    Lavesson, Niklas
    IEEE TRANSACTIONS ON EDUCATION, 2010, 53 (04) : 672 - 676
  • [44] Using Machine Learning to Predict Suspended Sediment Transport under Climate Change
    Bezak, Nejc
    Lebar, Klaudija
    Bai, Yun
    Rusjan, Simon
    WATER RESOURCES MANAGEMENT, 2025,
  • [45] A Machine Learning Approach to Case Adaptation
    Liao, Chieh-Kang
    Liu, Alan
    Chao, Yu-Sheng
    2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 106 - 109
  • [46] An omics-based machine learning approach to predict diabetes progression: a RHAPSODY study
    Roderick C. Slieker
    Magnus Münch
    Louise A. Donnelly
    Gerard A. Bouland
    Iulian Dragan
    Dmitry Kuznetsov
    Petra J. M. Elders
    Guy A. Rutter
    Mark Ibberson
    Ewan R. Pearson
    Leen M. ’t Hart
    Mark A. van de Wiel
    Joline W. J. Beulens
    Diabetologia, 2024, 67 : 885 - 894
  • [47] An omics-based machine learning approach to predict diabetes progression: a RHAPSODY study
    Slieker, Roderick C.
    Munch, Magnus
    Donnelly, Louise A.
    Bouland, Gerard A.
    Dragan, Iulian
    Kuznetsov, Dmitry
    Elders, Petra J. M.
    Rutter, Guy A.
    Ibberson, Mark
    Pearson, Ewan R.
    Hart, Leen M. 't
    van de Wiel, Mark A.
    Beulens, Joline W. J.
    DIABETOLOGIA, 2024, 67 (05) : 885 - 894
  • [48] Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff
    Behrouz, Mina Shahed
    Yazdi, Mohammad Nayeb
    Sample, David J.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 317
  • [49] Improving Operating Room Efficiency: A Machine Learning Approach to Predict Case-Time Duration
    Bartek, Matthew A.
    Saxena, Rajeev C.
    Solomon, Swart
    Fong, Christine T.
    Behara, Lakshmana D.
    Venigandla, Ravitheja
    Velgapudi, Kalyani
    Nair, Bala G.
    Lang, John D.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2018, 227 (04) : S149 - S149
  • [50] Improving Operating Room Efficiency: Machine Learning Approach to Predict Case-Time Duration
    Bartek, Matthew A.
    Saxena, Rajeev C.
    Solomon, Stuart
    Fong, Christine T.
    Behara, Lakshmana D.
    Venigandla, Ravitheja
    Velagapudi, Kalyani
    Lang, John D.
    Nair, Bala G.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2019, 229 (04) : 346 - +