Towards Lattice Quantum Chromodynamics on FPGA devices

被引:2
|
作者
Korcyl, Grzegorz [1 ]
Korcyl, Piotr [2 ,3 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Dept Informat Technol, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, M Smoluchowski Inst Phys, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
High performance computing; FPGA devices; Lattice QCD calculations; Computer Science and Technology;
D O I
10.1016/j.cpc.2019.107029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we describe a single-node, double precision Field Programmable Gate Array (FPGA) implementation of the Conjugate Gradient algorithm in the context of Lattice Quantum Chromodynamics. As a benchmark of our proposal we invert numerically the Dirac-Wilson operator on a 4-dimensional grid on three Xilinx hardware solutions: Zynq Ultrascale+ evaluation board, the Alveo U250 accelerator and the largest device available on the market, the VU13P device. In our implementation we separate software/hardware parts in such a way that the entire multiplication by the Dirac operator is performed in hardware, and the rest of the algorithm runs on the host. We find out that the FPGA implementation can offer a performance comparable with that obtained using current CPU or Intel's many core Xeon Phi accelerators. A possible multiple node FPGA-based system is discussed and we argue that power-efficient High Performance Computing (HPC) systems can be implemented using FPGA devices only. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Light front quantum chromodynamics: Towards phenomenology
    Harindranath, A
    PRAMANA-JOURNAL OF PHYSICS, 2000, 55 (1-2): : 241 - 245
  • [32] Light front quantum chromodynamics: Towards phenomenology
    A Harindranath
    Pramana, 2000, 55 : 241 - 245
  • [33] Fermions in light front transverse lattice quantum chromodynamics
    Chakrabarti, D
    De, AK
    Harindranath, A
    PRAMANA-JOURNAL OF PHYSICS, 2003, 61 (05): : 967 - 977
  • [34] Performance of a Lattice Quantum Chromodynamics kernel on the Cell processor
    Spray, J.
    Hill, J.
    Trew, A.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (09) : 642 - 646
  • [35] THE RELATION BETWEEN QUANTUM CHROMODYNAMICS AND A FREE STRING ON A LATTICE
    KAZAKOV, VA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1983, 85 (06): : 1887 - 1898
  • [36] Deuteronlike Heavy Dibaryons from Lattice Quantum Chromodynamics
    Junnarkar, Parikshit
    Mathur, Nilmani
    PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [37] Searching for new physics at the frontiers with lattice quantum chromodynamics
    Van de Water, Ruth S.
    BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 : 34 - 44
  • [38] THE LATTICE GAUGE-THEORY APPROACH TO QUANTUM CHROMODYNAMICS
    KOGUT, JB
    REVIEWS OF MODERN PHYSICS, 1983, 55 (03) : 775 - 836
  • [39] The critical point of quantum chromodynamics through lattice and experiment
    SOURENDU GUPTA
    Pramana, 2011, 76 : 801 - 809
  • [40] THE DECONFINING PHASE-TRANSITION IN LATTICE QUANTUM CHROMODYNAMICS
    GOTTLIEB, SA
    KUTI, J
    TOUSSAINT, D
    KENNEDY, AD
    MEYER, S
    PENDLETON, BJ
    SUGAR, RL
    JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (5-6) : 1105 - 1115