Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide

被引:1
|
作者
Liu, Zhen [1 ]
Jia, Weiguo [1 ]
Wang, Yang [1 ]
Wang, Hongyu [1 ]
Men-Ke, Neimule [1 ]
Zhang, Jun-Ping [1 ]
机构
[1] Inner Mongolia Univ, Sch Phys Sci & Technol, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon-based optical waveguide; dark soliton; nonlinear effect; interaction; RAMAN AMPLIFICATION; 2-PHOTON ABSORPTION; AIRY PULSES; WAVELENGTH;
D O I
10.1088/1674-1056/ab577d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation characteristic of two identical and parallel dark solitons in a silicon-on-insulator (SOI) waveguide is simulated numerically using the split-step Fourier method. The parallel dark solitons imposed by the initial chirp are investigated mainly by changing their power, their relative time delay. The simulation shows that the time delay deforms the parallel dark soliton pulse, forming a bright-like soliton in the transmission process and making the transmission quality down. By increasing the power of one dark soliton, the energy of the other dark soliton can be increased, and larger increase in a soliton's power leads to larger increase in the energy of the other. When the initial chirp is introduced into one of the dark solitons, higher energy consumption is observed. In particular, positive chirps resulting in pulse broadening width while negative chirps narrowing, with an obvious compression effect on the other dark soliton. Finally, large negative chirps are found to have a profound impact on parallel and nonparallel dark solitons.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] High reflectivity gratings on silicon-on-insulator waveguide facets
    Schmid, J. H.
    Cheben, P.
    Lapointe, J.
    Janz, S.
    Delage, A.
    Densmore, A.
    Xu, D. -X.
    OPTICS EXPRESS, 2008, 16 (21): : 16481 - 16488
  • [32] Solitons and spectral broadening in long silicon-on-insulator photonic wires
    Ding, W.
    Benton, C.
    Gorbach, A. V.
    Wadsworth, W. J.
    Knight, J. C.
    Skryabin, D. V.
    Gnan, M.
    Sorrel, M.
    De La Rue, R. M.
    OPTICS EXPRESS, 2008, 16 (05) : 3310 - 3319
  • [33] Dual structure waveguide grating triplexer based on silicon-on-insulator
    Yang, Junbo
    Chang, Shengli
    Zhang, JingJing
    INTERNATIONAL SYMPOSIUM ON PHOTONICS AND OPTOELECTRONICS 2014, 2014, 9233
  • [34] Crosstalk reduction for Arrayed waveguide gratings on Silicon-on-Insulator platform
    Li, Lingfeng
    Xiong, Heng-Na
    Li, Xuan
    Chen, Xiaofei
    Wang, Changhui
    Le, Zichun
    Wang, Xuyang
    Ma, Xiao
    Zou, Jun
    OPTICS AND LASER TECHNOLOGY, 2024, 175
  • [35] Silicon-On-Insulator Integrated Waveguide Filters for Photonic Channelizer Applications
    Pruessner, Marcel W.
    Stievater, Todd H.
    Rabinovich, William S.
    Devgan, Preetpaul S.
    Urick, Vincent J.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 3065 - 3066
  • [36] Broadband Mid-Infrared Silicon-on-Insulator Waveguide Devices
    Dong, Bowei
    Lee, Chengkuo
    Wang, Hong
    Luo, Xianshu
    Lo, Patrick Guo-Qiang
    2017 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2017, : 15 - 16
  • [37] Analysis of Silicon-On-Insulator (SOI) Buried Waveguide Phase Modulator
    Rezak, Hanim Abdul
    Hazura, Haroon
    Bidin, Mardiana
    Shaari, Sahbudin
    Menon, P. Susthitha
    MATERIAL SCIENCE AND ENGINEERING TECHNOLOGY, 2012, 462 : 532 - 535
  • [38] Photodetector for 1550 nm formed in silicon-on-insulator slab waveguide
    Ackert, J. J.
    Murray, K. J.
    Jessop, P. E.
    Knights, A. P.
    ELECTRONICS LETTERS, 2012, 48 (18) : 1148 - U182
  • [39] Silicon-on-insulator waveguide Mach-Zehnder wavelength combiner
    Liu, Y
    Liang, TK
    Chow, CW
    Tsang, HK
    2005 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, 2005, : 309 - 310
  • [40] Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide
    Wen, J.
    Liu, H.
    Huang, N.
    Sun, Q.
    Zhao, W.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (04): : 867 - 871