An Improved Process for Fabricating High-Mobility Organic Molecular Crystal Field-Effect Transistors

被引:0
|
作者
Bell, Laurence L. [1 ]
Micolich, Adam P. [1 ]
Hamilton, Alex R. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
organic electronics; field-effect transistor;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we present an alternate way of making elastomer transistor stamps and high-mobility organic field-effect transistors. In particular, we have removed the need to prepare and use a silanised Si wafer for curing the stamps, and the need to handle a fragile micron-thickness polydimethylsiloxane (PDMS) film and laminate it, bubble free, against the PDMS transistor stamp. We find that despite the altered design, rougher PDMS surface, and lamination and measurement in air, we still achieve mobilities of order 10 cm(2)/Vs. Our device shows hole conduction with a threshold voltage of - 9.1 V. This corresponds to a doping concentration of 1.4 x 10(10) cm(-2), likely due to gaseous species such as oxygen adsorbed at the rubrene/PDMS interface.
引用
收藏
页码:658 / +
页数:2
相关论文
共 50 条
  • [21] Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices
    Hanying Li
    Gaurav Giri
    Jeffrey B. H. Tok
    Zhenan Bao
    MRS Bulletin, 2013, 38 : 34 - 42
  • [22] Downscaling of Organic Field-Effect Transistors based on High-Mobility Semiconducting Blends for High-Frequency Operation
    Losi, Tommaso
    Viola, Fabrizio Antonio
    Sala, Elda
    Heeney, Martin
    He, Qiao
    Kleemann, Hans
    Caironi, Mario
    SMALL METHODS, 2024, 8 (12):
  • [23] High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors
    Chaure, Nandu B.
    Cammidge, Andrew N.
    Chambrier, Isabelle
    Cook, Michael J.
    Cain, Markys G.
    Murphy, Craig E.
    Pal, Chandana
    Ray, Asim K.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2011, 12 (02)
  • [24] 25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors
    Dong, Huanli
    Fu, Xiaolong
    Liu, Jie
    Wang, Zongrui
    Hu, Wenping
    ADVANCED MATERIALS, 2013, 25 (43) : 6158 - 6182
  • [25] Two-dimensional crystal growth of thermally converted organic semiconductors at the surface of ionic liquid and high-mobility organic field-effect transistors
    Soeda, Junshi
    Okamoto, Toshihiro
    Hamaguchi, Azusa
    Ikeda, Yoshinori
    Sato, Hiroyasu
    Yamano, Akihito
    Takeya, Jun
    ORGANIC ELECTRONICS, 2013, 14 (04) : 1211 - 1217
  • [26] Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors
    Wang, Cong
    Zhang, Xiaotao
    Dong, Huanli
    Chen, Xiaodong
    Hu, Wenping
    ADVANCED ENERGY MATERIALS, 2020, 10 (29)
  • [27] Temperature- and density-dependent channel potentials in high-mobility organic field-effect transistors
    Kemerink, M.
    Hallam, T.
    Lee, M. J.
    Zhao, N.
    Caironi, M.
    Sirringhaus, H.
    PHYSICAL REVIEW B, 2009, 80 (11):
  • [28] Low-power high-mobility organic single-crystal field-effect transistor
    Fu, Beibei
    Sun, Lingjie
    Liu, Lei
    Ji, Deyang
    Zhang, Xiaotao
    Yang, Fangxu
    Hu, Wenping
    SCIENCE CHINA-MATERIALS, 2022, 65 (10) : 2779 - 2785
  • [29] Singularity-Enhanced Terahertz Detection in High-Mobility Field-Effect Transistors
    Khavronin, M.
    Petrov, A.
    Kazantsev, A. E.
    Nikulin, E., I
    Bandurin, D. A.
    PHYSICAL REVIEW APPLIED, 2020, 13 (06):
  • [30] Singularity-Enhanced Terahertz Detection in High-Mobility Field-Effect Transistors
    Khavronin M.
    Petrov A.
    Kazantsev A.E.
    Nikulin E.I.
    Bandurin D.A.
    Bandurin, D.A. (bandurin@mit.edu), 1600, American Physical Society (13):