An Improved Process for Fabricating High-Mobility Organic Molecular Crystal Field-Effect Transistors

被引:0
|
作者
Bell, Laurence L. [1 ]
Micolich, Adam P. [1 ]
Hamilton, Alex R. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
organic electronics; field-effect transistor;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we present an alternate way of making elastomer transistor stamps and high-mobility organic field-effect transistors. In particular, we have removed the need to prepare and use a silanised Si wafer for curing the stamps, and the need to handle a fragile micron-thickness polydimethylsiloxane (PDMS) film and laminate it, bubble free, against the PDMS transistor stamp. We find that despite the altered design, rougher PDMS surface, and lamination and measurement in air, we still achieve mobilities of order 10 cm(2)/Vs. Our device shows hole conduction with a threshold voltage of - 9.1 V. This corresponds to a doping concentration of 1.4 x 10(10) cm(-2), likely due to gaseous species such as oxygen adsorbed at the rubrene/PDMS interface.
引用
收藏
页码:658 / +
页数:2
相关论文
共 50 条
  • [1] An improved process for fabricating high-mobility organic molecular crystal field-effect transistors
    Micolich, A. P.
    Bell, L. L.
    Hamilton, A. R.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
  • [2] An improved process for fabricating high-mobility organic molecular crystal field-effect transistors
    Micolich, A.P.
    Bell, L.L.
    Hamilton, A.R.
    Journal of Applied Physics, 2007, 102 (08):
  • [3] Manipulating Crystal Packing in Heterocycloarenes by an Atom Engineering Strategy for High-Mobility Organic Field-Effect Transistors
    Zhang, Rong
    Li, Wenhao
    Gu, Yuanhe
    Wang, Teng
    Zhang, Jiaxi
    Chi, Kai
    Liu, Yunqi
    Lu, Xuefeng
    Zhao, Yan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [4] High-mobility tetrathiafulvalene organic field-effect transistors from solution processing
    Leufgen, M.
    Rost, O.
    Gould, C.
    Schmidt, G.
    Geurts, J.
    Molenkamp, L. W.
    Oxtoby, N. S.
    Mas-Torrent, M.
    Crivillers, N.
    Veciana, J.
    Rovira, C.
    ORGANIC ELECTRONICS, 2008, 9 (06) : 1101 - 1106
  • [5] Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators
    Uno, Mayumi
    Tominari, Y.
    Takeya, J.
    ORGANIC ELECTRONICS, 2008, 9 (05) : 753 - 756
  • [6] High mobility organic semiconductors for field-effect transistors
    Xike Gao
    Zheng Zhao
    Science China Chemistry, 2015, 58 : 947 - 968
  • [7] High mobility organic semiconductors for field-effect transistors
    Xike Gao
    Zheng Zhao
    Science China(Chemistry), 2015, 58 (06) : 947 - 968
  • [8] High mobility organic semiconductors for field-effect transistors
    Gao, Xike
    Zhao, Zheng
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (06) : 947 - 968
  • [9] High mobility organic semiconductors for field-effect transistors
    Xike Gao
    Zheng Zhao
    Science China(Chemistry), 2015, (06) : 947 - 968
  • [10] Molecularly Smooth Self-Assembled Monolayer for High-Mobility Organic Field-Effect Transistors
    Das, Saurabh
    Lee, Byoung Hoon
    Linstadt, Roscoe T. H.
    Cunha, Keila
    Li, Youli
    Kaufman, Yair
    Levine, Zachary A.
    Lipshutz, Bruce H.
    Lins, Roberto D.
    Shea, Joan-Emma
    Heeger, Alan J.
    Ahn, B. Kollbe
    NANO LETTERS, 2016, 16 (10) : 6709 - 6715