DFR-ST: Discriminative feature representation with spatio-temporal cues for vehicle re-identification

被引:11
|
作者
Tu, Jingzheng [1 ,2 ,3 ]
Chen, Cailian [1 ,2 ,3 ]
Huang, Xiaolin [1 ,2 ,3 ]
He, Jianping [1 ,2 ,3 ]
Guan, Xinping [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Minist Educ China, Shanghai 200240, Peoples R China
[3] Shanghai Engn Res Ctr Intelligent Control & Manage, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicle re -identification; Computer vision; Deep learning; Attention mechanism; Video surveillance;
D O I
10.1016/j.patcog.2022.108887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vehicle re-identification (re-ID) aims to discover and match the target vehicles from a gallery image set taken by different cameras on a wide range of road networks. It is crucial for lots of applications such as security surveillance and traffic management. The remarkably similar appearances of distinct vehicles and the significant changes in viewpoints and illumination conditions pose grand challenges to vehicle re-ID. Conventional solutions focus on designing global visual appearances without sufficient consideration of vehicles' spatio-temporal relationships in different images. This paper proposes a discriminative feature representation with spatio-temporal clues (DFR-ST) for vehicle re-ID. It is capable of building robust fea-tures in the embedding space by involving appearance and spatio-temporal information. The proposed DFR-ST constructs an appearance model for a multi-grained visual representation by a two-stream archi-tecture and a spatio-temporal metric to provide complementary information based on this multi-modal information. Experimental results on four public datasets demonstrate DFR-ST outperforms the state-of-the-art methods, which validates the effectiveness of the proposed method. (c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multiple Person Re-identification using Part based Spatio-Temporal Color Appearance Model
    Bedagkar-Gala, Apurva
    Shah, Shishir K.
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [42] An Aligned Bidirectional Feature Representation for Person Re-identification
    Wang, Daiyin
    Hao, Lei
    Zhu, Yuesheng
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [43] An Enhanced Deep Feature Representation for Person Re-identification
    Wu, Shangxuan
    Chen, Ying-Cong
    Li, Xiang
    Wu, An-Cong
    You, Jin-Jie
    Zheng, Wei-Shi
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [44] Disentangled Feature Learning Network for Vehicle Re-Identification
    Bai, Yan
    Lou, Yihang
    Dai, Yongxing
    Liu, Jun
    Chen, Ziqian
    Duan, Ling-Yu
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 474 - 480
  • [45] Attributes Guided Feature Learning for Vehicle Re-Identification
    Li, Hongchao
    Lin, Xianmin
    Zheng, Aihua
    Li, Chenglong
    Luo, Bin
    He, Ran
    Hussain, Amir
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1211 - 1221
  • [46] Learning feature aggregation in temporal domain for re-identification
    Spanhel, Jakub
    Sochor, Jakub
    Juranek, Roman
    Dobes, Petr
    Bartl, Vojtech
    Herout, Adam
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 192
  • [47] Discriminative multi-scale adjacent feature for person re-identification
    Mengzan Qi
    Sixian Chan
    Feng Hong
    Yuan Yao
    Xiaolong Zhou
    Complex & Intelligent Systems, 2024, 10 : 4557 - 4569
  • [48] Cross-View Discriminative Feature Learning for Person Re-Identification
    Borgia, Alessandro
    Hua, Yang
    Kodirov, Elyor
    Robertson, Neil M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5338 - 5349
  • [49] Multi-Branch Enhanced Discriminative Network for Vehicle Re-Identification
    Lian, Jiawei
    Wang, Da-Han
    Wu, Yun
    Zhu, Shunzhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1263 - 1274
  • [50] Discriminative multi-scale adjacent feature for person re-identification
    Qi, Mengzan
    Chan, Sixian
    Hong, Feng
    Yao, Yuan
    Zhou, Xiaolong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 4557 - 4569