Neural networks and edge detection

被引:0
|
作者
Heirman, P [1 ]
Serneels, R [1 ]
机构
[1] Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:601 / 603
页数:3
相关论文
共 50 条
  • [41] Neural network arbitration for edge detection
    Ramalho, MA
    Curtis, KM
    ICECS 96 - PROCEEDINGS OF THE THIRD IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS, VOLS 1 AND 2, 1996, : 1112 - 1115
  • [42] Semisupervised Graph Neural Networks for Traffic Classification in Edge Networks
    Yang, Yang
    Lyu, Rui
    Gao, Zhipeng
    Rui, Lanlan
    Yan, Yu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023
  • [43] INFORMATION AT THE EDGE OF CHAOS IN FLUID NEURAL NETWORKS
    SOLE, RV
    MIRAMONTES, O
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 80 (1-2) : 171 - 180
  • [44] Efficient Deep Neural Networks for Edge Computing
    Alnemari, Mohammed
    Bagherzadeh, Nader
    2019 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE), 2019, : 1 - 7
  • [45] HIERARCHICAL ARTIFICIAL NEURAL NETWORKS FOR EDGE ENHANCEMENT
    LU, SW
    SZETO, A
    PATTERN RECOGNITION, 1993, 26 (08) : 1149 - 1163
  • [46] Edge representation and recognition using neural networks
    Kwon, O
    Lee, C
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 110 - 113
  • [47] Scaling for edge inference of deep neural networks
    Xu, Xiaowei
    Ding, Yukun
    Hu, Sharon Xiaobo
    Niemier, Michael
    Cong, Jason
    Hu, Yu
    Shi, Yiyu
    NATURE ELECTRONICS, 2018, 1 (04): : 216 - 222
  • [48] Exploiting Edge Features for Graph Neural Networks
    Gong, Liyu
    Cheng, Qiang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9203 - 9211
  • [49] HodgeNet: Graph Neural Networks for Edge Data
    Roddenberry, T. Mitchell
    Segarra, Santiago
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 220 - 224
  • [50] A Practical View on Training Neural Networks in the Edge
    Rueb, Marcus
    Sikora, Axel
    IFAC PAPERSONLINE, 2022, 55 (04): : 272 - 279