Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models

被引:194
|
作者
Wang, Jianzhou [1 ]
Song, Yiliao [1 ,2 ]
Liu, Feng [1 ,2 ]
Hou, Ru [2 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Multi-step wind speed forecast; Validation cuckoo search; EEMD; Lazy learning; Robustness; ARTIFICIAL NEURAL-NETWORKS; TIME-SERIES PREDICTION; LONG-TERM PREDICTION; UNIT COMMITMENT; ENERGY; REGRESSION; SELECTION; DECOMPOSITION; METHODOLOGY; STRATEGY;
D O I
10.1016/j.rser.2016.01.114
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind energy, which is clean, inexhaustible and free, has been used to mitigate the crisis of conventional resource depletion. However, wind power is difficult to implement on a large scale because the volatility of wind hinders the prediction of steady and accurate wind power or speed values, especially for multi-step-ahead and long horizon cases. Multi-step-ahead prediction of wind speed is challenging and can be realized by the Weather Research and Forecasting Model (WRF). However, a large error in wind speed will occur due to inaccurate predictions at the beginning of the synoptic process in WRF. Multi-step wind speed predictions using statistical and machine learning methods have rarely been studied because greater numbers of forecasting steps correspond to lower accuracy. In this study, a detailed review of wind speed forecasting is presented, including the application of wind energy, time horizons for wind speed prediction and wind speed forecasting methods. This paper presents eight strategies for realizing multi-step wind speed forecasting with machine-learning methods and compares 48 different hybrid models based on these eight strategies. The results show good consistency among the different wind farms, with COMB-DIRMO models generally having a higher prediction accuracy than the other strategies. Thus, this paper introduced three methods of combining these COMB-DIRMO models, an analysis of their performance improvements over the original models and a comparison among them. Valid experimental simulations demonstrate that ALL-DDVC, one combination of the COMB-DIRMO models, is a practical, effective and robust model for multi-step-ahead wind speed forecasting. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:960 / 981
页数:22
相关论文
共 50 条
  • [21] Hybrid numerical models for wind speed forecasting
    Brabec, Marek
    Craciun, Alexandra
    Dumitrescu, Alexandru
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2021, 220
  • [22] Multi Step Ahead Forecasting of Wind Power by Different Class of Neural Networks
    Saroha, Sumit
    Aggarwal, S. K.
    2014 RECENT ADVANCES IN ENGINEERING AND COMPUTATIONAL SCIENCES (RAECS), 2014,
  • [23] Uncertainty analysis of different forecast models for wind speed forecasting
    Gayathry, V
    Deepa, K.
    Sangeetha, S. V. Tresa
    Porselvi, T.
    Ramprabhakar, J.
    Gowtham, N.
    RENEWABLE ENERGY, 2025, 241
  • [24] Integrate deep learning and physically-based models for multi-step-ahead microclimate forecasting
    Kow, Pu-Yun
    Lee, Meng-Hsin
    Sun, Wei
    Yao, Ming-Hwi
    Chang, Fi-John
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [25] Application of Wavelet and Neural Network Models for Wind Speed and Power Generation Forecasting in a Brazilian Experimental Wind Park
    de Aquino, Ronaldo R. B.
    Lira, Milde M. S.
    de Oliveira, Josinaldo B.
    Carvalho, Manoel A., Jr.
    Neto, Otoni N.
    de Almeida, Givanildo J.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1479 - +
  • [26] A review on the forecasting of wind speed and generated power
    Ma Lei
    Luan Shiyan
    Jiang Chuanwen
    Liu Hongling
    Zhang Yan
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (04): : 915 - 920
  • [27] Multi-step-ahead neural networks for flood forecasting
    Chang, Fi-John
    Chiang, Yen-Ming
    Chang, Li-Chiu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (01): : 114 - 130
  • [28] Improved Wind Power Forecasting with ARIMA Models
    Hodge, Bri-Mathias
    Zeiler, Austin
    Brooks, Duncan
    Blau, Gary
    Pekny, Joseph
    Reklatis, Gintaras
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1789 - 1793
  • [29] Ensemble Learning Models for Wind Power Forecasting
    Deon, Samara
    de Lima, Jose Donizetti
    Dranka, Geremi Gilson
    Dal Molin Ribeiro, Matheus Henrique
    Santos dos Anjos, Julio Cesar
    de Paz Santana, Juan Francisco
    Quietinho Leithardt, Valderi Reis
    NEW TRENDS IN DISRUPTIVE TECHNOLOGIES, TECH ETHICS, AND ARTIFICIAL INTELLIGENCE, DITTET 2024, 2024, 1459 : 15 - 27
  • [30] Forecasting Models of Wind Power in Northeastern of Brazil
    de Aquino, Ronaldo R. B.
    Ludermir, Teresa B.
    Neto, Otoni Nobrega
    Ferreira, Aida A.
    Lira, Milde M. S.
    Carvalho, Manoel A., Jr.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,