A priori error estimates of mixed methods for quadratic convex optimal control problem governed by nonlinear parabolic equations

被引:0
|
作者
Lu, Z. L. [1 ]
Chen, Y. P. [2 ]
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Xiangtan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
来源
2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009) | 2009年
关键词
a priori error estimates; mixed finite element method; nonlinear parabolic optimal control; FINITE-ELEMENT METHODS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate a priori error estimates of quadratic convex optimal control problem governed by nonlinear parabolic equations using mixed finite element methods. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. By applying some error estimates results of mixed finite element methods for parabolic equations, we derive a priori error estimates of optimal order both for the coupled state and the control approximation of the optimal control problem
引用
收藏
页码:84 / +
页数:2
相关论文
共 50 条
  • [31] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Wanfang Shen
    Liang Ge
    Danping Yang
    Wenbin Liu
    Journal of Scientific Computing, 2015, 65 : 1 - 33
  • [32] Error estimates of expanded mixed methods for optimal control problems governed by hyperbolic integro-differential equations
    Hou, Tianliang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1675 - 1693
  • [33] A Priori Error Estimates of P02-P1 Mixed Finite Element Methods for a Class of Nonlinear Parabolic Equations
    Liu, Ch
    Hou, T.
    Weng, Zh
    NUMERICAL ANALYSIS AND APPLICATIONS, 2021, 14 (04) : 357 - 371
  • [34] A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations
    Yan, Ningning
    Zhou, Zhaojie
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (03) : 415 - 442
  • [35] A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations
    Ningning Yan
    Zhaojie Zhou
    Frontiers of Mathematics in China, 2008, 3 : 415 - 442
  • [36] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [37] OPTIMAL CONTROL PROBLEM FOR SYSTEMS GOVERNED BY NONLINEAR PARABOLIC EQUATIONS WITHOUT INITIAL CONDITIONS
    Bokalo, M. M.
    Tsebenko, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2016, 8 (01) : 21 - 37
  • [38] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Li, Lin
    Lu, Zuliang
    Zhang, Wei
    Huang, Fei
    Yang, Yin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [39] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Lin Li
    Zuliang Lu
    Wei Zhang
    Fei Huang
    Yin Yang
    Journal of Inequalities and Applications, 2018
  • [40] A Priori Error Estimate of Stochastic Galerkin Method for Optimal Control Problem Governed by Random Parabolic PDE with Constrained Control
    Gong, Benxue
    Sun, Tongjun
    Shen, Wanfang
    Liu, Wenbin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (05)