DETECTING CHAOS TIME SERIES VIA COMPLEX NETWORK FEATURE

被引:5
|
作者
Tang, Qiang [1 ,2 ]
Zhao, Junchan [1 ]
Hu, Tiesong [2 ]
机构
[1] Wuhan Text Univ, Res Ctr Nonlinear Sci, Wuhan 430073, Peoples R China
[2] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2011年 / 25卷 / 23期
基金
美国国家科学基金会;
关键词
Chaos series; phase space reconstruction; complex network; daily stream-flow series; SMALL-WORLD NETWORKS; STRANGE ATTRACTORS; SCALING BEHAVIOR; DYNAMICS; MARKET; INDEX;
D O I
10.1142/S0217984911027133
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, an effective method from time series to complex network via phase space reconstruction is introduced. We reconstruct the phase space from a time series by the time-delay coordinate method. Each state vector of phase space is regarded as a vertex of network and the connection is based on the distance of the vertices in phase space. The networks corresponding to various time series, the x component of the chaotic Rossler system, noisy periodic time series and random series, display different topology feature. So we can determine whether a time series is chaotic series by the topology feature of corresponding network. Finally, the daily stream-flow series of Yangtze River is investigated to validate the effective of our method.
引用
收藏
页码:1889 / 1896
页数:8
相关论文
共 50 条
  • [31] Detecting structural breaks in time series via genetic algorithms
    Benjamin Doerr
    Paul Fischer
    Astrid Hilbert
    Carsten Witt
    Soft Computing, 2017, 21 : 4707 - 4720
  • [32] Detecting structural breaks in time series via genetic algorithms
    Doerr, Benjamin
    Fischer, Paul
    Hilbert, Astrid
    Witt, Carsten
    SOFT COMPUTING, 2017, 21 (16) : 4707 - 4720
  • [33] Primary noise reduction efficiency for detecting chaos in high noisy pseudoperiodic time series
    Pukenas, K.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (02) : 83 - 88
  • [34] Detecting network modules in fMRI time series: A weighted network analysis approach
    Mumford, Jeanette A.
    Horvath, Steve
    Oldham, Michael C.
    Langfelder, Peter
    Geschwind, Daniel H.
    Poldrack, Russell A.
    NEUROIMAGE, 2010, 52 (04) : 1465 - 1476
  • [35] Chaos identification and prediction of pressure time series in water supply network
    Yang Jie
    Xu Zhe
    Kong Yaguang
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 6533 - 6538
  • [36] Detecting time's arrow: A method for identifying nonlinearity and deterministic chaos in time-series data
    Stone, L
    Landan, G
    May, RM
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1376) : 1509 - 1513
  • [37] Feature-fused residual network for time series classification
    Wei, Yanxuan
    Du, Mingsen
    Li, Teng
    Zheng, Xiangwei
    Ji, Cun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (10)
  • [38] RTFN: A robust temporal feature network for time series classification
    Xiao, Zhiwen
    Xu, Xin
    Xing, Huanlai
    Luo, Shouxi
    Dai, Penglin
    Zhan, Dawei
    INFORMATION SCIENCES, 2021, 571 : 65 - 86
  • [39] Time Series Model Interpretation via Temporal Feature Sampling
    Liu, Zhaoyang
    Li, Xiaodong
    Cui, Yanping
    WEB AND BIG DATA, PT I, APWEB-WAIM 2023, 2024, 14331 : 346 - 360
  • [40] Is there chaos in economic time series?
    Serletis, A
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1996, 29 : S210 - S212