Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis

被引:10
|
作者
Li, Guosi [1 ]
Zhu, Fucheng [1 ]
Wei, Peipei [1 ]
Xue, Hailong [2 ]
Chen, Naidong [1 ]
Lu, Baowei [1 ]
Deng, Hui [1 ]
Chen, Cunwu [1 ]
Yin, Xinjian [3 ]
机构
[1] West Anhui Univ, Dept Biol & Pharmaceut Engn, Anhui Engn Lab Conservat & Sustainable Utilizat T, Luan 237012, Peoples R China
[2] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[3] Sun Yat Sen Univ, Sch Marine Sci, Zhuhai 519080, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
hyperoside; quercetin; UDP-dependent glycosyltransferase; UDP-glucose; metabolic engineering; IN-VIVO; QUERCETIN; FLAVONOIDS; GENE; GLYCOSYLTRANSFERASE; IDENTIFICATION; REGENERATION; PURIFICATION; CLONING; DAMAGE;
D O I
10.3390/microorganisms10030628
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg center dot L-1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg center dot L-1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg center dot L-1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg center dot L-1 center dot h(-1) after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    Chemler, Joseph A.
    Fowler, Zachary L.
    McHugh, Kyle P.
    Koffas, Mattheos A. G.
    METABOLIC ENGINEERING, 2010, 12 (02) : 96 - 104
  • [32] Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli
    Wu, Tong
    Liu, Yumei
    Liu, Jinsheng
    Chen, Zhenya
    Huo, Yi-Xin
    BIOMOLECULES, 2022, 12 (05)
  • [33] Metabolic Engineering of Escherichia coli for High-Titer Biosynthesis of 3′-Sialyllactose
    Li, Chenchen
    Li, Mengli
    Hu, Miaomiao
    Miao, Ming
    Zhang, Tao
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (10) : 5379 - 5390
  • [34] Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering
    Xu, Jian
    Zhou, Li
    Zhou, Zhemin
    BIOLOGY-BASEL, 2021, 10 (10):
  • [35] Metabolic Engineering of Escherichia coli for De Novo Biosynthesis of the Platform Chemical Pelletierine
    Li, Wei
    Zhao, Peng
    Li, Ying
    Wu, Shimin
    Tian, Pingfang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (02): : 778 - 790
  • [36] Multiplex modification of Escherichia coli for enhanced β-alanine biosynthesis through metabolic engineering
    Wang, Pei
    Zhou, Hai-Yan
    Li, Bo
    Ding, Wen-Qing
    Liu, Zhi-Qiang
    Zheng, Yu-Guo
    BIORESOURCE TECHNOLOGY, 2021, 342
  • [37] Escherichia coli as a host for metabolic engineering
    Pontrelli, Sammy
    Chiu, Tsan-Yu
    Lan, Ethan I.
    Chen, Frederic Y. -H.
    Chang, Peiching
    Liao, James C.
    METABOLIC ENGINEERING, 2018, 50 : 16 - 46
  • [38] Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12
    Huan Fang
    Dong Li
    Jie Kang
    Pingtao Jiang
    Jibin Sun
    Dawei Zhang
    Nature Communications, 9
  • [39] Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol
    Yang, Bo
    Liang, Shaoxiong
    Liu, Huanhuan
    Liu, Jiao
    Cui, Zhenzhen
    Wen, Jianping
    BIORESOURCE TECHNOLOGY, 2018, 267 : 599 - 607
  • [40] Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli
    Li, Zhongcai
    Liu, Qian
    Sun, Jiahui
    Sun, Jianjian
    Li, Mingjie
    Zhang, Yun
    Deng, Aihua
    Liu, Shuwen
    Wen, Tingyi
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):