The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion

被引:251
|
作者
Caraballo, T. [1 ]
Garrido-Atienza, M. J. [1 ]
Taniguchi, T. [2 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] Kurume Univ, Grad Sch Comparat Culture, Div Math Sci, Fukuoka 8398502, Japan
基金
日本学术振兴会;
关键词
Delay stochastic PDEs; Fractional Brownian motion; Exponential decay in mean square; DRIVEN;
D O I
10.1016/j.na.2011.02.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a fractional Brownian motion B-Q(H)(t): dX(t) = (AX(t) + f (t, X-t))dt + g(t)dB(Q)(H)(t), with Hurst parameter H is an element of (1/2, 1). We also consider the existence of weak solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3671 / 3684
页数:14
相关论文
共 50 条
  • [21] Exponential stability behavior of neutral stochastic integrodifferential equations with fractional Brownian motion and impulsive effects
    Ma, Yong-Ki
    Arthi, G.
    Anthoni, S. Marshal
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [22] Exponential stability behavior of neutral stochastic integrodifferential equations with fractional Brownian motion and impulsive effects
    Yong-Ki Ma
    G. Arthi
    S. Marshal Anthoni
    Advances in Difference Equations, 2018
  • [23] EXISTENCE OF STRONG SOLUTIONS AND UNIQUENESS IN LAW FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Duncan, Tyrone
    Nualart, David
    STOCHASTICS AND DYNAMICS, 2009, 9 (03) : 423 - 435
  • [24] Exponential behavior and upper noise excitation index of solutions to evolution equations with unbounded delay and tempered fractional Brownian motions
    Wang, Yejuan
    Liu, Yarong
    Caraballo, Tomas
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1779 - 1807
  • [25] Exponential behavior and upper noise excitation index of solutions to evolution equations with unbounded delay and tempered fractional Brownian motions
    Yejuan Wang
    Yarong Liu
    Tomás Caraballo
    Journal of Evolution Equations, 2021, 21 : 1779 - 1807
  • [26] Stochastic evolution equations driven by Liouville fractional Brownian motion
    Zdzisław Brzeźniak
    Jan van Neerven
    Donna Salopek
    Czechoslovak Mathematical Journal, 2012, 62 : 1 - 27
  • [27] Stochastic evolution equations driven by Liouville fractional Brownian motion
    Brzezniak, Zdzislaw
    van Neerven, Jan
    Salopek, Donna
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (01) : 1 - 27
  • [28] An Averaging Principle for Stochastic Differential Delay Equations with Fractional Brownian Motion
    Xu, Yong
    Pei, Bin
    Li, Yongge
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] Existence and uniqueness of solutions for delay stochastic evolution equations
    Caraballo, T
    Garrido-Atienza, MJ
    Real, J
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2002, 20 (06) : 1225 - 1256
  • [30] Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion
    Zhang, Xinwen
    Ruan, Dehao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,