Deep Learning Based Underwater Image Enhancement Using Deep Convolution Neural Network

被引:0
|
作者
Ray, Sharmita [1 ]
Baghel, Amit [1 ]
Bhatia, Vimal [2 ]
机构
[1] Jabalpur Engn Coll, Dept Elect & Telecommun, Jabalpur, India
[2] Indian Inst Technol, Indore, India
关键词
Underwater Image Enhancement; Deep Learning; Convolutional Layer; Deconvolutional Layer; Convolutional; Neural Network;
D O I
10.1109/ICAECT54875.2022.9808077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater Image Enhancement (UIE) has received a lot of attention due to increased civilian and military uses, though there has been substantial progress in this area. Underwater photography, on the other hand, has low contrast and unclear features due to light absorption and scattering. Deep learning has become extremely prevalent in underwater image enhancement and restoration in recent times because of its extensive feature learning abilities, yet precise enhancement still has problems. To address this issue, we have proposed a UIE approach using Deep Learning (DL) techniques. A Deep Convolution Neural Network (CNN) framework for underwater IE and restoration by channelling the damaged underwater image and extracting multi-contextual information. The experiments were performed on the EUVP (Enhancing Underwater Visual Perception) dataset and the results outline that the recommended approach outperforms the other most recent methodologies and gives efficient outcomes.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Medical image enhancement algorithms using deep learning-based convolutional neural network
    Ghandour, C.
    El-Shafai, Walid
    El-Rabaie, S.
    JOURNAL OF OPTICS-INDIA, 2023, 52 (04): : 1931 - 1941
  • [12] Medical image enhancement algorithms using deep learning-based convolutional neural network
    C. Ghandour
    Walid El-Shafai
    S. El-Rabaie
    Journal of Optics, 2023, 52 : 1931 - 1941
  • [13] Cardiovascular disease classification using Convolution Neural Network based on deep learning
    Shon, H. S.
    Kim, K. O.
    Cha, E.
    Kim, K.
    FEBS OPEN BIO, 2019, 9 : 106 - 106
  • [14] Underwater image enhancement based on computational imaging and deep learning
    Yu, Xiao
    Yu, Jia
    Ma, Zhen
    OuYang, Feng
    Zheng, Bing
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VIII, 2021, 11897
  • [15] Image detail enhancement of nanocomposites based on deep convolution neural networks
    Feng, Zhanwei
    Yan, Kun
    FERROELECTRICS, 2023, 610 (01) : 28 - 40
  • [16] Line spectrum extraction of underwater acoustic target using deep convolution network and adaptive enhancement learning
    Du, Shuanping
    Chen, Yuechao
    Luo, Zhaorui
    Shengxue Xuebao/Acta Acustica, 2023, 48 (04): : 699 - 714
  • [17] Motorcycle Detection using Deep Learning Convolution Neural Network
    Ismail, Fatin Natasha
    Yassin, Ihsan Mohd
    Ahmad, Adizul
    Ali, Megat Syahirul Amin Megat
    Baharom, Rahimi
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 49 - 54
  • [18] A Deep Learning Approach for Underwater Image Enhancement
    Perez, Javier
    Attanasio, Aleks C.
    Nechyporenko, Nataliya
    Sanz, Pedro J.
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 183 - 192
  • [19] Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network
    Liu, Zhengguang
    Chen, Huang
    Ren, Zhengyong
    Tang, Jingtian
    Xu, Zhimin
    Chen, Yuanpeng
    Liu, Xu
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 188
  • [20] Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network
    Liu, Zhengguang
    Chen, Huang
    Ren, Zhengyong
    Tang, Jingtian
    Xu, Zhimin
    Chen, Yuanpeng
    Liu, Xu
    Journal of Applied Geophysics, 2021, 188