Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine

被引:8
|
作者
Wang, Ruimeng [1 ]
Pan, Li [1 ]
Niu, Wenhui [1 ]
Li, Rumeng [1 ]
Zhao, Xiaoyang [1 ]
Bian, Xiqing [1 ]
Yu, Chong [1 ]
Xia, Haoming [1 ,2 ,3 ,4 ,5 ]
Chen, Taizheng [1 ]
机构
[1] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Key Lab Earth Syst Observat & Modeling, Kaifeng 475004, Peoples R China
[3] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow, Minist Educ, Kaifeng 475004, Peoples R China
[4] Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng 475004, Peoples R China
[5] Henan Univ, Collaborat Innovat Ctr Yellow River Civilizat Joi, Kaifeng 475004, Peoples R China
来源
OPEN GEOSCIENCES | 2021年 / 13卷 / 01期
关键词
Landsat imagery; Google Earth Engine; water body extraction; spatiotemporal change; Xiaolangdi Reservoir; LOWER YELLOW-RIVER; AREA; WETLAND; CLASSIFICATION; OPERATION; PROJECTS;
D O I
10.1515/geo-2020-0305
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Xiaolangdi Reservoir is a key control project to control the water and sediment in the lower Yellow River, and a timely and accurate grasp of the reservoir's water storage status is essential for the function of the reservoir. This study used all available Landsat images (789 scenes) and adopted the modified normalized difference water index, enhanced vegetation index, and normalized dif-ference vegetation index to map the surface water from 1999 to 2019 in Google Earth Engine (GEE) cloud plat-form. The spatiotemporal characteristics of the surface water body area changes in the Xiaolangdi Reservoir in the past 21 years are analyzed from the water body type division, area change, type conversion, and the driving force of the Xiaolangdi water body area changes was analyzed. The results showed that (1) the overall accuracy of the water body extraction method was 98.86%, and the kappa coefficient was 0.96; (2) the maximum water body area of the Xiaolangdi Reservoir varies greatly between inter-annual and intra-annual, and seasonal water body and permanent water body have uneven spatiotemporal distribution; (3) in the conversion of water body types, the increased seasonal water body area of the Xiaolangdi Reservoir from 1999 to 2019 was mainly formed by the conversion of permanent water body, and the reduced permanent water body area was mainly caused by non-water conversion; and (4) the change of the water body area of the Xiaolangdi Reservoir has a weak negative correlation with natural factors such as precipitation and temperature, and population. It is positively corre-lated with seven indicators such as runoff and regional gross domestic product (GDP). The findings of the research will provide necessary data support for the management and planning of soil and water resources in the Xiaolangdi Reservoir.
引用
收藏
页码:1290 / 1302
页数:13
相关论文
共 50 条
  • [31] Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam
    Kandekar, Vidya. U.
    Pande, Chaitanya. B.
    Rajesh, Jayaraman
    Atre, A. A.
    Gorantiwar, S. D.
    Kadam, S. A.
    Gavit, Bhau
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2021, 7 (03)
  • [32] Monitoring Spatial and Temporal Patterns of Rubber Plantation Dynamics Using Time-Series Landsat Images and Google Earth Engine
    Li, Yuchen
    Liu, Chenli
    Zhang, Jun
    Zhang, Ping
    Xue, Yufei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9450 - 9461
  • [33] Surface Water Area Mapping in Huai River Basin over the past three decades from Landsat imagery based on Google Earth Engine
    Xia, Haoming
    Zhao, Jinyu
    Qin, Yaochen
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [34] Monitoring of subpixel impervious surface dynamics using seasonal time series Landsat 8 OLI imagery
    Zhang, Lei
    Zhang, Ming
    Wang, Qian
    ECOLOGICAL INDICATORS, 2023, 154
  • [35] Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine
    Garajeh, Mohammad Kazemi
    Haji, Fatemeh
    Tohidfar, Mahsa
    Sadeqi, Amin
    Ahmadi, Reyhaneh
    Kariminejad, Narges
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine
    Mohammad Kazemi Garajeh
    Fatemeh Haji
    Mahsa Tohidfar
    Amin Sadeqi
    Reyhaneh Ahmadi
    Narges Kariminejad
    Scientific Reports, 14
  • [37] Monitoring ecosystem restoration of multiple surface coal mine sites in China via LANDSAT images using the Google Earth Engine
    Wang, Huihui
    Xie, Miaomiao
    Li, Hanting
    Feng, Qianqian
    Zhang, Cui
    Bai, Zhongke
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (10) : 2936 - 2950
  • [38] Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery
    Sahu, Rakesh
    Gupta, R. D.
    GEOCARTO INTERNATIONAL, 2021, 36 (14) : 1591 - 1611
  • [39] Spatiotemporal Landsat-Sentinel-2 satellite imagery-based Hybrid Deep Neural network for paddy crop prediction using Google Earth engine
    Saini, Preeti
    Nagpal, Bharti
    ADVANCES IN SPACE RESEARCH, 2024, 73 (10) : 4988 - 5004
  • [40] Combined use of Sentinel-2 and Landsat-8 to monitor water surface area and evaluated drought risk severity using Google Earth Engine
    Benzougagh, Brahim
    Meshram, Sarita Gajbhiye
    El Fellah, Bouchta
    Mastere, Mohamed
    Dridri, Abdallah
    Sadkaoui, Driss
    Mimich, Khalid
    Khedher, Khaled Mohamed
    EARTH SCIENCE INFORMATICS, 2022, 15 (02) : 929 - 940