Stochastic Adaptive Sampling for Mobile Sensor Networks using Kernel Regression

被引:0
|
作者
Xu, Yunfei [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we provide a stochastic adaptive sampling strategy for mobile sensor networks to estimate scalar fields over a surveillance region using kernel regression. Our approach builds on a Markov Chain Monte Carlo (MCMC) algorithm particularly known as the Fastest Mixing Markov Chain (FMMC) under a quantized finite state space for generating the optimal sampling probability distribution asymptotically. An adaptive sampling algorithm for multiple mobile sensors is designed and numerically evaluated under a complicated scalar field. The comparison simulation study with a random walk benchmark strategy demonstrates the good performance of the proposed scheme.
引用
收藏
页码:2897 / 2902
页数:6
相关论文
共 50 条
  • [21] Adaptive Trap Coverage in Mobile Sensor Networks
    Kuo, Chia-Hsu
    Chen, Tzung-Shi
    Syu, Siou-Ci
    14TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2017) / 12TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2017) / AFFILIATED WORKSHOPS, 2017, 110 : 102 - 109
  • [22] ADAPTIVE DATA DISSEMINATION IN MOBILE SENSOR NETWORKS
    Kinalis, Athanasios
    Nikoletseas, Sotiris
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (04) : 435 - 457
  • [23] Traffic Adaptive Routing for Mobile Sensor Networks
    Hong, Ki Sup
    Lee, Sang Hoon
    Choi, Lynn
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (05) : 1097 - 1111
  • [24] Mobile platform sampling for designing environmental sensor networks
    Budi, Setia
    de Souza, Paulo
    Timms, Greg
    Susanto, Ferry
    Malhotra, Vishv
    Turner, Paul
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (03)
  • [25] Mobile platform sampling for designing environmental sensor networks
    Setia Budi
    Paulo de Souza
    Greg Timms
    Ferry Susanto
    Vishv Malhotra
    Paul Turner
    Environmental Monitoring and Assessment, 2018, 190
  • [26] Spatial Gaussian Process Regression With Mobile Sensor Networks
    Gu, Dongbing
    Hu, Huosheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (08) : 1279 - 1290
  • [27] Adaptive Kernel Function Using Line Transect Sampling
    Albadareen, Baker
    Ismail, Noriszura
    2017 UKM FST POSTGRADUATE COLLOQUIUM, 2018, 1940
  • [28] Sensor Compensation in Motor Drives using Kernel Regression
    Galotto, L.
    Pinto, J. O. P.
    Ozpineci, B.
    Leite, L. C.
    Borges, L. E. S.
    IEEE IEMDC 2007: PROCEEDINGS OF THE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1 AND 2, 2007, : 229 - +
  • [29] Mobility using First and Second Derivatives for Kernel-based Regression in Wireless Sensor Networks
    Ghadban, Nisrine
    Honeine, Paul
    Mourad-Chehade, Farah
    Francis, Clovis
    Farah, Joumana
    21ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2014), 2014, : 203 - 206
  • [30] Sensor network localization using kernel spectral regression
    Wang, Chengqun
    Chen, Jiming
    Sun, Youxian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2010, 10 (08): : 1045 - 1054