Stochastic Adaptive Sampling for Mobile Sensor Networks using Kernel Regression

被引:0
|
作者
Xu, Yunfei [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we provide a stochastic adaptive sampling strategy for mobile sensor networks to estimate scalar fields over a surveillance region using kernel regression. Our approach builds on a Markov Chain Monte Carlo (MCMC) algorithm particularly known as the Fastest Mixing Markov Chain (FMMC) under a quantized finite state space for generating the optimal sampling probability distribution asymptotically. An adaptive sampling algorithm for multiple mobile sensors is designed and numerically evaluated under a complicated scalar field. The comparison simulation study with a random walk benchmark strategy demonstrates the good performance of the proposed scheme.
引用
收藏
页码:2897 / 2902
页数:6
相关论文
共 50 条
  • [1] Stochastic Adaptive Sampling for Mobile Sensor Networks using Kernel Regression
    Xu, Yunfei
    Choi, Jongeun
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (04) : 778 - 786
  • [2] Stochastic adaptive sampling for mobile sensor networks using kernel regression
    Yunfei Xu
    Jongeun Choi
    International Journal of Control, Automation and Systems, 2012, 10 : 778 - 786
  • [3] Adaptive Sampling Using Mobile Sensor Networks
    Huang, Shuo
    Tan, Jindong
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 657 - 662
  • [4] Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
    Xu, Yunfei
    Choi, Jongeun
    SENSORS, 2011, 11 (03) : 3051 - 3066
  • [5] Adaptive Sampling and Sensing Approach with Mobile Sensor Networks
    Zhang, Hao
    Zhu, Yunlong
    Tan, Jindong
    2015 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2015, : 654 - 660
  • [6] Mobile Sensor Networks and Control: Adaptive Sampling of Spatiotemporal Processes
    Paley, Derek A.
    Wolek, Artur
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 91 - 114
  • [7] Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Taps
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4195 - 4200
  • [8] An Efficient Adaptive Sampling Approach for Mobile Robotic Sensor Networks using Proximal ADMM
    Viet-Anh Le
    Linh Nguyen
    Nghiem, Truong X.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1101 - 1106
  • [9] Multistep Predictions for Adaptive Sampling in Mobile Robotic Sensor Networks Using Proximal ADMM
    Viet-Anh Le
    Linh Nguyen
    Nghiem, Truong X.
    IEEE ACCESS, 2022, 10 : 64850 - 64861
  • [10] Sequential Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) : 2078 - 2084