Interfacial study of clathrates confined in reversed silica pores

被引:12
|
作者
Mileo, Paulo G. M. [1 ]
Rogge, Sven M. J. [1 ]
Houlleberghs, Maarten [2 ]
Breynaert, Eric [2 ]
Martens, Johan A. [2 ]
Van Speybroeck, Veronique [1 ]
机构
[1] Univ Ghent, Ctr Mol Modeling CMM, Technol Pk 46, B-9052 Zwijnaarde, Belgium
[2] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
基金
欧洲研究理事会; 比利时弗兰德研究基金会;
关键词
METHANE HYDRATE FORMATION; MOLECULAR-DYNAMICS SIMULATIONS; GAS-STORAGE; CARBON-DIOXIDE; PHASE-EQUILIBRIA; ORBITAL METHODS; DRY WATER; BASIS-SET; CAPTURE; CYCLOPENTANE;
D O I
10.1039/d1ta03105h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.
引用
收藏
页码:21835 / 21844
页数:10
相关论文
共 50 条
  • [21] Modeling the solid/liquid interfacial properties of methylimidazole confined in hydrophobic silica nanopores
    Zheng, Weizhong
    Sun, Weizhen
    Zhao, Ling
    Qian, Feng
    CHEMICAL ENGINEERING SCIENCE, 2021, 231
  • [22] Impact of the Interfacial Energy and Density Fluctuations on the Shift of the Glass-Transition Temperature of Liquids Confined in Pores
    Talik, Agnieszka
    Tarnacka, Magdalena
    Geppert-Rybczynska, Monika
    Minecka, Aldona
    Kaminska, Ewa
    Kaminski, Kamil
    Paluch, Marian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (09): : 5549 - 5556
  • [23] Decomposition Characterizations of Methane Hydrate Confined inside Nanoscale Pores of Silica Gel below 273.15 K
    Wan, Lihua
    Zhou, Xuebing
    Chen, Peili
    Zang, Xiaoya
    Liang, Deqing
    Guan, Jinan
    CRYSTALS, 2019, 9 (04):
  • [24] Interfacial structure of an H-bonding liquid confined into silica nanopore with surface silanols
    Guégan, R
    Morineau, D
    Alba-Simionesco, C
    CHEMICAL PHYSICS, 2005, 317 (2-3) : 236 - 244
  • [25] Mass Transport of Lignin in Confined Pores
    Ghaffari, Roujin
    Almqvist, Henrik
    Nilsson, Robin
    Liden, Gunnar
    Larsson, Anette
    POLYMERS, 2022, 14 (10)
  • [26] Water nanodroplets confined in zeolite pores
    Coudert, Francois-Xavier
    Cailliez, Fabien
    Vuilleumier, Rodolphe
    Fuchs, Alain H.
    Boutin, Anne
    FARADAY DISCUSSIONS, 2009, 141 : 377 - 398
  • [27] Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores
    Fu, Dong
    Li, Xiao-Sen
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (08):
  • [28] Making silica with chiral pores
    Wood, A
    CHEMICAL WEEK, 2004, 166 (20) : 24 - 24
  • [29] MELTING OF ICE IN SILICA PORES
    DROSTHANSEN, W
    ETZLER, FM
    LANGMUIR, 1989, 5 (06) : 1439 - 1441
  • [30] Glass transition behaviors of ethylene glycol - Water solutions confined within nano-pores of silica gel
    Nagoe, Atsushi
    Oguni, Masaharu
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 185 - 188