Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations

被引:6
|
作者
Yun, Eun Ju [1 ]
Cho, Yoonho [1 ]
Han, Na Ree [1 ]
Kim, In Jung [1 ]
Jin, Yong-Su [2 ]
Kim, Kyoung Heon [1 ]
机构
[1] Korea Univ, Grad Sch, Dept Biotechnol, Seoul 02841, South Korea
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Colanic acid; Exopolysaccharide; Escherichia coli; waaF; rcsF; Environmental perturbation; RCS PHOSPHORELAY; FUCOSE; POLYSACCHARIDE; STRESS; COMMON; BIOSYNTHESIS; PATHWAY; SYSTEM;
D O I
10.1007/s12010-021-03671-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Colanic acid (CA) is a major exopolysaccharide synthesized by Escherichia coli that serves as a constituent of biofilm matrices. CA demonstrates potential applications in the food, cosmetics, and pharmaceutical industry. Moreover, L-fucose, a monomeric constituent of CA, exhibits various physiological activities, such as antitumor, anti-inflammatory, and skin-whitening. Here, the effects of genetic and environmental perturbations were investigated for improving CA production by E. coli. When rcsF, a positive regulator gene of CA synthesis, was expressed in E. coli Delta waaF, a CA-producing strain constructed previously, the CA titer increased to 3051.2 mg/L as compared to 2052.8 mg/L observed with E. coli Delta waaF. Among the environmental factors tested, namely, osmotic and oxidative stresses and pH, pH was a primary factor that significantly improved CA production. When the pH of the culture medium of E. coli Delta waaF + rcsF was maintained at 7, the CA titer significantly increased to 4351.6 mg/L. The CA yield obtained with E. coli Delta waaF + rcsF grown at pH 7 was 5180.4 mg CA/g dry cell weight, which is the highest yield of CA reported so far. This engineered E. coli system with optimization of environmental conditions can be employed for fast and economically-feasible production of CA.
引用
收藏
页码:4083 / 4096
页数:14
相关论文
共 50 条
  • [21] Increased Hydrogen Production by Genetic Engineering of Escherichia coli
    Fan, Zhanmin
    Yuan, Ling
    Chatterjee, Ranjini
    PLOS ONE, 2009, 4 (02):
  • [22] RcsC-mediated induction of colanic acid by secretion of streptokinase in Escherichia coli K-12
    Lee, SH
    Kim, IC
    Lee, WS
    Byun, SM
    FEMS MICROBIOLOGY LETTERS, 1996, 139 (2-3) : 189 - 193
  • [23] Fermentation Characteristics of Engineered Escherichia coli for Succinic Acid Production
    Zhao, Jinfang
    Hua, Bowen
    Wang, Yongze
    Liu, Zao
    Wang, Jinhua
    Zhou, Shengde
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 982 - 985
  • [24] Production of itaconic acid using metabolically engineered Escherichia coli
    Okamoto, Shusuke
    Chin, Taejun
    Hiratsuka, Ken
    Aso, Yuji
    Tanaka, Yasutomo
    Takahashi, Tetsuya
    Ohara, Hitomi
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2014, 60 (05): : 191 - 197
  • [25] Production of extracellular fatty acid using engineered Escherichia coli
    Liu, Hui
    Yu, Chao
    Feng, Dexin
    Cheng, Tao
    Meng, Xin
    Liu, Wei
    Zou, Huibin
    Xian, Mo
    MICROBIAL CELL FACTORIES, 2012, 11
  • [26] Challenges in the production of itaconic acid by metabolically engineered Escherichia coli
    Yamamoto, Kouhei
    Nagata, Keisuke
    Ohara, Hitomi
    Aso, Yuji
    BIOENGINEERED, 2015, 6 (05) : 303 - 306
  • [27] Production of caffeoylmalic acid from glucose in engineered Escherichia coli
    Li, Tianzhen
    Zhou, Wei
    Bi, Huiping
    Zhuang, Yibin
    Zhang, Tongcun
    Liu, Tao
    BIOTECHNOLOGY LETTERS, 2018, 40 (07) : 1057 - 1065
  • [28] Production of extracellular fatty acid using engineered Escherichia coli
    Hui Liu
    Chao Yu
    Dexin Feng
    Tao Cheng
    Xin Meng
    Wei Liu
    Huibin Zou
    Mo Xian
    Microbial Cell Factories, 11
  • [29] Production of caffeoylmalic acid from glucose in engineered Escherichia coli
    Tianzhen Li
    Wei Zhou
    Huiping Bi
    Yibin Zhuang
    Tongcun Zhang
    Tao Liu
    Biotechnology Letters, 2018, 40 : 1057 - 1065
  • [30] Production of Glutaconic Acid in a Recombinant Escherichia coli Strain
    Djurdjevic, Ivana
    Zelder, Oskar
    Buckel, Wolfgang
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (01) : 320 - 322