Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se2 solar cells

被引:0
|
作者
Dullweber, T [1 ]
Rau, U
Contreras, MA
Noufi, R
Schock, HW
机构
[1] Univ Stuttgart, Inst Phys Elekt, D-70569 Stuttgart, Germany
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
bandgap; chalcopyrite compounds; charge carrier processes; conversion efficiency; photovoltaic cell materials; thin-film devices;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate photogeneration and carrier recombination in Cu(In, Ga)Se-2 based thin-film solar cells with graded gap absorbers, The graded gap in the absorbers is obtained by variation of the Ga/In ratio during the coevaporation process from elemental sources. The devices exhibit conversion efficiencies up to eta = 16.7%, In these graded gap devices, the Open circuit voltage depends on that bandgap which corresponds to the Ga content close to the absorber surface (i.e., the bandgap in the space charge region). In contrast, the short circuit current density relates to the overall minimum of the bandgap in the graded gap structure. We show that in our graded gap devices, two different bandgaps, one for recombination and one for photogeneration, are experimentally realized.
引用
收藏
页码:2249 / 2254
页数:6
相关论文
共 50 条
  • [31] Correlation between grain composition and charge carrier collection in Cu(In,Ga)Se2 solar cells
    West, Bradley
    Husein, Sebastian
    Stuckelberger, Michael
    Lai, Barry
    Maser, Joerg
    Stripe, Benjamin
    Rose, Volker
    Guthrey, Harvey
    Ai-Jassim, Mowafak
    Bertoni, Mariana
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [32] Stability of Cu(In,Ga)Se2 solar cells: A literature review
    Theelen, Mirjam
    Daume, Felix
    SOLAR ENERGY, 2016, 133 : 586 - 627
  • [33] Model for electronic transport in Cu(In,Ga)Se2 solar cells
    Niemegeers, A
    Burgelman, M
    Herberholz, R
    Rau, U
    Hariskos, D
    Schock, HW
    PROGRESS IN PHOTOVOLTAICS, 1998, 6 (06): : 407 - 421
  • [34] Interpretation of admittance signatures in Cu(In,Ga)Se2 solar cells
    Sozzi, Giovanna
    Di Napoli, Simone
    Menozzi, Roberto
    Weiss, Thomas P.
    Buecheler, Stephan
    Tiwari, Ayodya N.
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 2515 - 2519
  • [35] Control of conduction band offset in wide-gap Cu(In,Ga)Se2 solar cells
    Minemoto, T
    Hashimoto, Y
    Shams-Kolahi, W
    Satoh, T
    Negami, T
    Takakura, H
    Hamakawa, Y
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 75 (1-2) : 121 - 126
  • [36] Optical and electrical modeling of Cu(In,Ga)Se2 solar cells
    Krc, J.
    Cernivec, G.
    Campa, A.
    Malmstrom, J.
    Edoff, M.
    Smole, F.
    Topic, M.
    OPTICAL AND QUANTUM ELECTRONICS, 2006, 38 (12-14) : 1115 - 1123
  • [37] High-efficiency Cu(In,Ga)Se2 solar cells
    Friedlmeier, Theresa Magorian
    Jackson, Philip
    Bauer, Andreas
    Hariskos, Dimitrios
    Kiowski, Oliver
    Menner, Richard
    Wuerz, Roland
    Powalla, Michael
    THIN SOLID FILMS, 2017, 633 : 13 - 17
  • [38] Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations
    Heinemann, Marc Daniel
    Efimova, Varvara
    Klenk, Reiner
    Hoepfner, Britta
    Wollgarten, Markus
    Unold, Thomas
    Schock, Hans-Werner
    Kaufmann, Christian A.
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1228 - 1237
  • [39] Fabrication and characterisation of Cu(In,Ga)Se2 solar cells on polyimide
    Zachmann, H.
    Puttnins, S.
    Yakushev, M. V.
    Luckert, F.
    Martin, R. W.
    Karotki, A. V.
    Gremenok, V. F.
    Mudryi, A. V.
    THIN SOLID FILMS, 2011, 519 (21) : 7264 - 7267
  • [40] Potential for light trapping in Cu(In,Ga)Se2 solar cells
    Malmström, J
    Lundberg, O
    Stolt, L
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 344 - 347