Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se2 solar cells

被引:0
|
作者
Dullweber, T [1 ]
Rau, U
Contreras, MA
Noufi, R
Schock, HW
机构
[1] Univ Stuttgart, Inst Phys Elekt, D-70569 Stuttgart, Germany
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
bandgap; chalcopyrite compounds; charge carrier processes; conversion efficiency; photovoltaic cell materials; thin-film devices;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate photogeneration and carrier recombination in Cu(In, Ga)Se-2 based thin-film solar cells with graded gap absorbers, The graded gap in the absorbers is obtained by variation of the Ga/In ratio during the coevaporation process from elemental sources. The devices exhibit conversion efficiencies up to eta = 16.7%, In these graded gap devices, the Open circuit voltage depends on that bandgap which corresponds to the Ga content close to the absorber surface (i.e., the bandgap in the space charge region). In contrast, the short circuit current density relates to the overall minimum of the bandgap in the graded gap structure. We show that in our graded gap devices, two different bandgaps, one for recombination and one for photogeneration, are experimentally realized.
引用
收藏
页码:2249 / 2254
页数:6
相关论文
共 50 条
  • [1] Correlation between carrier recombination and valence band offset effect of graded Cu(In,Ga)Se2 solar cells
    Wang, Yazi
    Muryobayashi, Toya
    Nakada, Kazuyoshi
    Li, Zhengcao
    Yamada, Akira
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 201
  • [2] Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Ga-Graded Cu(In,Ga)Se2 Solar Cells
    Chang, Yu-Han
    Carron, Romain
    Ochoa, Mario
    Tiwari, Ayodhya N.
    Durrant, James R.
    Steier, Ludmilla
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (40)
  • [3] Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells
    Taretto, K.
    Rau, U.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)
  • [4] Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells
    Metzger, W. K.
    Repins, I. L.
    Romero, M.
    Dippo, P.
    Contreras, M.
    Noufi, R.
    Levi, D.
    THIN SOLID FILMS, 2009, 517 (07) : 2360 - 2364
  • [5] A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions
    Li, Jian V.
    Grover, Sachit
    Contreras, Miguel A.
    Ramanathan, Kannan
    Kuciauskas, Darius
    Noufi, Rommel
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 : 143 - 149
  • [6] Band-gap grading in Cu(In,Ga)Se2 solar cells
    Gloeckler, M
    Sites, JR
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (11) : 1891 - 1894
  • [7] Fabrication of Cu(In,Ga)Se2 solar cells with a single graded band profile
    Nishimura, Takahito
    Kasashima, Shunsuke
    Hirai, Yoshiaki
    Kurokawa, Yasuyoshi
    Yamada, Akira
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (06): : 1235 - 1238
  • [8] Analysis of recombination path for Cu(In,Ga)Se2 solar cells through luminescence
    Yang, J.
    Du, H. W.
    Chen, D. S.
    Xu, F.
    Zhou, P. H.
    Xu, J.
    Ma, Z. Q.
    MATERIALS LETTERS, 2015, 145 : 236 - 238
  • [9] Tunneling-enhanced recombination in Cu(In,Ga)Se2 heterojunction solar cells
    Rau, U
    APPLIED PHYSICS LETTERS, 1999, 74 (01) : 111 - 113
  • [10] Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se2 solar cells
    Troviano, M.
    Taretto, K.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (11) : 3081 - 3086