ON THE VARIANCE OF LINEAR STATISTICS OF HERMITIAN RANDOM MATRICES

被引:3
|
作者
Min, Chao [1 ]
Chen, Yang [1 ]
机构
[1] Univ Macau, Dept Math, Ave Univ, Taipa, Macau, Peoples R China
来源
ACTA PHYSICA POLONICA B | 2016年 / 47卷 / 04期
关键词
FLUCTUATIONS;
D O I
10.5506/APhysPolB.47.1127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear statistics, a random variable built out of the sum of the evaluation of functions at the eigenvalues of a N x N random matrix, Sigma(N)(j=1) f (x(j)) or tr f (M), is an ubiquitous statistical characteristics in random matrix theory. Hermitian random matrix ensembles, under the eigenvalue-eigenvector decompositions give rise to the joint probability density functions of N random variables. We show that if f (.) is a polynomial of degree K, then the variance of tr f (M) is of the form of Sigma(K)(n=1) n (d(n))(2) and d(n) is related to the expansion coefficients c(n) of the polynomial f (x) = Sigma(K)(n=1) c(n) (P) over cap (n) (x), where (P) over cap (n) (x) are polynomials of degree n, orthogonal with respect to the weights 1/root(b-x) (x-a), root(b-x) (x-a), root(b-x) (x-a)/x, (0 < a < x < b), root(b-x) (x-a)/x(1-x), (0 < a < x < b < 1), respectively.
引用
收藏
页码:1127 / 1146
页数:20
相关论文
共 50 条