ON THE VARIANCE OF LINEAR STATISTICS OF HERMITIAN RANDOM MATRICES

被引:3
|
作者
Min, Chao [1 ]
Chen, Yang [1 ]
机构
[1] Univ Macau, Dept Math, Ave Univ, Taipa, Macau, Peoples R China
来源
ACTA PHYSICA POLONICA B | 2016年 / 47卷 / 04期
关键词
FLUCTUATIONS;
D O I
10.5506/APhysPolB.47.1127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear statistics, a random variable built out of the sum of the evaluation of functions at the eigenvalues of a N x N random matrix, Sigma(N)(j=1) f (x(j)) or tr f (M), is an ubiquitous statistical characteristics in random matrix theory. Hermitian random matrix ensembles, under the eigenvalue-eigenvector decompositions give rise to the joint probability density functions of N random variables. We show that if f (.) is a polynomial of degree K, then the variance of tr f (M) is of the form of Sigma(K)(n=1) n (d(n))(2) and d(n) is related to the expansion coefficients c(n) of the polynomial f (x) = Sigma(K)(n=1) c(n) (P) over cap (n) (x), where (P) over cap (n) (x) are polynomials of degree n, orthogonal with respect to the weights 1/root(b-x) (x-a), root(b-x) (x-a), root(b-x) (x-a)/x, (0 < a < x < b), root(b-x) (x-a)/x(1-x), (0 < a < x < b < 1), respectively.
引用
收藏
页码:1127 / 1146
页数:20
相关论文
共 50 条
  • [1] On the linear statistics of Hermitian random matrices
    Chen, Y
    Lawrence, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04): : 1141 - 1152
  • [2] Linear eigenvalue statistics of random matrices with a variance profile
    Adhikari, Kartick
    Jana, Indrajit
    Saha, Koushik
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (03)
  • [3] Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
    Damien Passemier
    Matthew R. McKay
    Yang Chen
    Journal of Statistical Physics, 2015, 160 : 120 - 150
  • [4] Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
    Passemier, Damien
    McKay, Matthew R.
    Chen, Yang
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (01) : 120 - 150
  • [5] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [6] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) : 613 - 632
  • [7] Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) : 946 - 1034
  • [8] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [9] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    Journal of Statistical Physics, 2022, 187
  • [10] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Jana, Indrajit
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (02)