Convolutional Neural Networks for Scops Owl Sound Classification

被引:25
|
作者
Hidayat, Alam Ahmad [1 ]
Cenggoro, Tjeng Wawan [1 ,2 ]
Pardamean, Bens [1 ,3 ]
机构
[1] Bina Nusantara Univ, Bioinformat & Data Sci Res Ctr, Jakarta 11480, Indonesia
[2] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Jakarta 11480, Indonesia
[3] Bina Nusantara Univ, Comp Sci Dept, BINUS Grad Program Master Comp Sci, Jakarta 11480, Indonesia
关键词
acoustic features; bird sound classification; convolutional neural network; mean average precision; scops owl;
D O I
10.1016/j.procs.2021.12.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adopting a deep learning model into bird sound classification tasks becomes a common practice in order to construct a robust automated bird sound detection system. In this paper, we employ a four-layer Convolutional Neural Network (CNN) formulated to classify different species of Indonesia scops owls based on their vocal sounds. Two widely used representations of an acoustic signal: log-scaled mel-spectrogram and Mel Frequency Cepstral Coefficient (MFCC) are extracted from each sound file and fed into the network separately to compare the model performance with different inputs. A more complex CNN that can simultaneously process the two extracted acoustic representations is proposed to provide a direct comparison with the baseline model. The dual-input network is the well-performing model in our experiment that achieves 97.55% Mean Average Precision (MAP). Meanwhile, the baseline model achieves a MAP score of 94.36% for the mel-spectrogram input and 96.08% for the MFCC input. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [41] CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION
    Zelenina, Larisa
    Khaimina, Liudmila
    Khaimin, Evgenii
    Khripunov, D.
    Zashikhina, Inga
    MATHEMATICS AND INFORMATICS, 2022, 65 (01): : 19 - 29
  • [42] An Ensemble of Convolutional Neural Networks for Audio Classification
    Nanni, Loris
    Maguolo, Gianluca
    Brahnam, Sheryl
    Paci, Michelangelo
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [43] Ship classification based on convolutional neural networks
    Li Zhenzhen
    Zhao Baojun
    Tang Linbo
    Li Zhen
    Feng Fan
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7343 - 7346
  • [44] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [45] Classification of Radar Signals with Convolutional Neural Networks
    Hong, Seok-Jun
    Yi, Yearn-Gui
    Jo, Jeil
    Seo, Bo-Seok
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 894 - 896
  • [46] Aerial Scene Classification with Convolutional Neural Networks
    Jia, Sibo
    Liu, Huaping
    Sun, Fuchun
    ADVANCES IN NEURAL NETWORKS - ISNN 2015, 2015, 9377 : 258 - 265
  • [47] Convolutional Neural Networks for Web Documents Classification
    Artene, Codrut-Georgian
    Tibeica, Marius Nicolae
    Vecliuc, Dumitru Daniel
    Leon, Florin
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 289 - 302
  • [48] Classification of musical instruments with convolutional neural networks
    Mitrovic, Miljan Z.
    Misic, Marko J.
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 815 - 818
  • [49] Strabismus Classification using Convolutional Neural Networks
    Kim, Donghwan
    Joo, Jaehan
    Zhu, Guohua
    Seo, Jeongbin
    Ha, Jaeseung
    Kim, Suk Chan
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 216 - 218
  • [50] Query Classification Using Convolutional Neural Networks
    Zhang, Hanxiao
    Song, Wei
    Liu, Lizhen
    Du, Chao
    Zhao, Xinlei
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 441 - 444