Binaural bark subband preprocessing of nonstationary signals for noise robust speech feature extraction

被引:0
|
作者
Peters, M [1 ]
机构
[1] BMW AG, Ctr Res & Dev, D-80788 Munich, Germany
来源
PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS | 1998年
关键词
D O I
10.1109/TFSA.1998.721498
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A two channel approach to noise robust feature extraction for speech recognition in the car is proposed. The coherence function within the Bark subbands of the Mel-Frequency-Cepstral-Transform is calculated to estimate the spectral similarity of two statistic processes. It is illustrated how the coherence of speech in binaural signals is used to increase the robustness against incoherent noise. The introduced preprocessing method of nonstationary signals in two microphones results in an additive correction term of the Mel-Frequency-Cepstral-Coefficients.
引用
收藏
页码:609 / 612
页数:4
相关论文
共 50 条
  • [21] Efficient Noise Robust Feature Extraction Algorithms for Distributed Speech Recognition (DSR) Systems
    Bojan Kotnik
    Damjan Vlaj
    Bogomir Horvat
    International Journal of Speech Technology, 2003, 6 (3) : 205 - 219
  • [22] Orthogonalized distinctive phonetic feature extraction for noise-robust automatic speech recognition
    Fukuda, T
    Nitta, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (05): : 1110 - 1118
  • [23] Subband feature extraction using lapped orthogonal transform for speech recognition
    Tufekci, Z
    Gowdy, JN
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 149 - 152
  • [24] Speech recognition using FHMMS robust against nonstationary noise
    Betkowska, Agnieszka
    Shinoda, Koichi
    Furui, Sadaoki
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 1029 - +
  • [25] Noise robust speech recognition using subband-crosscorrelation analysis
    Kajita, S
    Takeda, K
    Itakura, F
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1998, E81D (10) : 1079 - 1086
  • [26] Speaker normalized spectral subband parameters for noise robust speech recognition
    Tsuge, Satoru
    Fukada, Toshiaki
    Singer, Harald
    Paliwal, Kuldip K.
    Journal of the Acoustical Society of Japan (E) (English translation of Nippon Onkyo Gakkaishi), 1999, 20 (06): : 425 - 431
  • [27] Binaural Deep Neural Network for Noise Robust Automatic Speech Recognition
    Jiang, Yi
    Zu, Yuan-Yuan
    INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND AUTOMATION (ICCEA 2014), 2014, : 512 - 517
  • [28] Geometrical feature extraction for robust speech recognition
    Li, Xiaokun
    Kwan, Chiman
    2005 39TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2005, : 558 - 562
  • [29] Speaker normalized spectral subband parameters for noise robust speech recognition
    Tsuge, S
    Fukada, T
    Singer, H
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 285 - 288
  • [30] A Generalized Preprocessing and Feature Extraction Platform for Scalp EEG Signals on FPGA
    Wijesinghe, L. P.
    Wickramasuriya, D. S.
    Pasqual, Ajith A.
    2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 137 - 142