Independent domination polynomial of zero-divisor graphs of commutative rings

被引:1
|
作者
Gursoy, Necla Kircali [1 ]
Ulker, Alper [2 ]
Gursoy, Arif [3 ]
机构
[1] Ege Univ, Tire Kutsan Vocat Sch, TR-35900 Tire, Bakirkoy, Turkey
[2] Istanbul Kultur Univ, Dept Math & Comp Sci, TR-34156 Istanbul, Turkey
[3] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
关键词
Independent domination polynomial; Independent dominating set; Zero-divisor graph; Independent set; Domination number; Maximal independent set;
D O I
10.1007/s00500-077-07217-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An independent dominating set of a graph is a vertex subset that is both dominating and independent set in the graph, i.e., a maximal independent set. Also, the independent domination polynomial is an ordinary generating function for the number of independent dominating sets in the graph. In this paper, we examine independent domination polynomials of zero-divisor graphs of the ring Z(n) where n is an element of {2p, p(2), p(alpha), pq, p(2)q, pqr) and their roots. Finally, we prove the log-concavity and unimodality of their independent domination polynomials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On diameter of the zero-divisor and the compressed zero-divisor graphs of skew Laurent polynomial rings
    Hashemi, Ebrahim
    Abdi, Mona
    Alhevaz, Abdollah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (07)
  • [22] On Domination in Zero-Divisor Graphs
    Rad, Nader Jafari
    Jafari, Sayyed Heidar
    Mojdeh, Doost Ali
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 407 - 411
  • [23] The embedding of line graphs associated to the zero-divisor graphs of commutative rings
    Hung-Jen Chiang-Hsieh
    Pei-Feng Lee
    Hsin-Ju Wang
    Israel Journal of Mathematics, 2010, 180 : 193 - 222
  • [24] THE EMBEDDING OF LINE GRAPHS ASSOCIATED TO THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Chiang-Hsieh, Hung-Jen
    Lee, Pei-Feng
    Wang, Hsin-Ju
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 180 (01) : 193 - 222
  • [25] Realization of zero-divisor graphs of finite commutative rings as threshold graphs
    Raja, Rameez
    Wagay, Samir Ahmad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 567 - 576
  • [26] Upper dimension and bases of zero-divisor graphs of commutative rings
    Pirzada, S.
    Aijaz, M.
    Redmond, S. P.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 168 - 173
  • [27] Central sets and radii of the zero-divisor graphs of commutative rings
    Redmond, Shane P.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2389 - 2401
  • [28] CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2179 - 2188
  • [29] The i-extended zero-divisor graphs of commutative rings
    Bennis, Driss
    El Alaoui, Brahim
    Fahid, Brahim
    Farnik, Michal
    L'hamri, Raja
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4661 - 4678
  • [30] ON COMPRESSED ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, E., V
    Filina, O. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1531 - 1555