Expected Power Bound for Two-Dimensional Digital Filters in the Fornasini-Marchesini Local State-Space Model

被引:31
|
作者
Ahn, Choon Ki [1 ]
Kar, Haranath [2 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[2] Motilal Nehru Natl Inst Technol Allahabad, Dept Elect & Commun Engn, Allahabad 211004, Uttar Pradesh, India
基金
新加坡国家研究基金会;
关键词
Expected power bound (EPB); Fornasini-Marchesini local state-space (FMLSS) model; two-dimensional (2-D) digital filter; Wiener process noise; 2-D DISCRETE-SYSTEMS; GLOBAL ASYMPTOTIC STABILITY; 2ND MODEL; ROESSER MODEL; OVERFLOW OSCILLATIONS; IMPROVED CRITERION; ROBUST STABILITY; ELIMINATION; L(2);
D O I
10.1109/LSP.2014.2382764
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter examines the expected power bound (EPB) for two-dimensional (2-D) digital filters in the Fornasini-Marchesini local state-space (FMLSS) model with Wiener process noise. The goal of this letter is to establish a new criterion whereby 2-D digital filters in the FMLSS form have a 2-D EPB. The criterion also ensures asymptotic stability without Wiener process noise. A numerical example demonstrates the usefulness of the proposed result. The criterion in the letter and that in [1] provide a systematic framework for EPB of 2-D digital filters.
引用
收藏
页码:1065 / 1069
页数:5
相关论文
共 50 条
  • [31] A state-space design of two-dimensional digital filters
    Kawakami, A
    ISIE'96 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1 AND 2, 1996, : 213 - 216
  • [32] STABILIZATION OF TWO-DIMENSIONAL NONLINEAR SYSTEMS DESCRIBED BY FORNASINI-MARCHESINI AND ROESSER MODELS
    Pakshin, Pavel
    Emelianova, Julia
    Galkowski, Krzysztof
    Rocers, Eric
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3848 - 3866
  • [33] Design of Parametric Controller for Two-Dimensional Polynomial Systems Described by the Fornasini-Marchesini Second Model
    Li, Xiaoxue
    Hou, Xiaorong
    IEEE ACCESS, 2019, 7 : 44070 - 44079
  • [34] Common eigenvector approach to exact order reduction for multidimensional Fornasini-Marchesini state-space models
    Zhao, Dongdong
    Yan, Shi
    Matsushita, Shinya
    Xu, Li
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (01) : 60 - 74
  • [35] Two-Dimensional Peak-to-Peak Filtering for Stochastic Fornasini-Marchesini Systems
    Ahn, Choon Ki
    Shi, Peng
    Basin, Michael V.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (05) : 1472 - 1479
  • [36] A state-space realization form of two-dimensional digital filters
    Kawakami, A
    PROCEEDINGS OF THE 39TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 1996, : 1409 - 1412
  • [37] Finite-frequency fault detection for two-dimensional Fornasini-Marchesini dynamical systems
    Ren, Yingying
    Ding, Da-Wei
    Li, Qing
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (12) : 2610 - 2621
  • [38] A PROCEDURE FOR N-D FORNASINI-MARCHESINI STATE-SPACE MODEL REALIZATION BASED ON RIGHT MATRIX FRACTION DESCRIPTION
    Matsushita, Shin-ya
    Saito, Tatsuya
    Xu, Li
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6133 - 6137
  • [39] NEW STABILITY RESULTS FOR 2-D DISCRETE-SYSTEMS BASED ON THE FORNASINI-MARCHESINI STATE-SPACE MODEL
    KANELLAKIS, A
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1994, 141 (05): : 427 - 432
  • [40] REDUCED TRANSFER-MATRIX FROM THE MORE GENERAL 2D STATE-SPACE MODEL OF FORNASINI-MARCHESINI
    MESSITER, M
    SHAMASH, Y
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (04) : 735 - 738