Keyphrase Extraction Using PageRank and Word Features

被引:0
|
作者
Le, Huong T. [1 ]
Bui, Que X. [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Informat & Commun Technol, Hanoi, Vietnam
关键词
keyphrase extraction; unsupervised learning; PageRank; word embedding; word features;
D O I
10.1109/RIVF51545.2021.9642124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyphrase extraction is a fundamental task in natural language processing. Its purpose is to generate a set of keyphrases representing the main idea of the input document. Keyphrase extraction can be used in several applications such as recommendation systems, plagiarism checking, text summarization, and text retrieval. In this paper, we propose an approach using PageRank and word features to compute keyphrases' scores. Experimental results on SemEval 2010 dataset show that our method provides promising results compared to existing works in this field.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 50 条
  • [21] Keyphrase Extraction by Improving TextRank with an Integration of Word Embedding and Syntactic Information
    Zhang S.
    Luo Q.
    Feng Y.
    Ding K.
    Gifu D.
    Zhang S.
    Ma X.
    Xia J.
    Recent Advances in Computer Science and Communications, 2021, 14 (09) : 2969 - 2975
  • [22] PromptRank: Unsupervised Keyphrase Extraction Using Prompt
    Kong, Aobo
    Zhao, Shiwan
    Chen, Hao
    Li, Qicheng
    Qin, Yong
    Sun, Ruiqi
    Bai, Xiaoyan
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9788 - 9801
  • [23] Improving keyphrase extraction using Wikipedia semantics
    Shi, Tianyi
    Jiao, Shidou
    Hou, Junqi
    Li, Minglu
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 42 - +
  • [24] Aligning Assessments with Competencies using Keyphrase Extraction
    Shankararaman, Venky
    Gottipati, Swapna
    2014 INTERNATIONAL CONFERENCE ON TEACHING, ASSESSMENT AND LEARNING (TALE), 2014, : 25 - 32
  • [25] Exploiting Position and Contextual Word Embeddings for Keyphrase Extraction from Scientific Papers
    Patel, Krutarth
    Caragea, Cornelia
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 1585 - 1591
  • [26] Keyphrase Generation with Word Attention
    Huang, Hai
    Huang, Tianshuo
    Ma, Longxuan
    Zhang, Lei
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 270 - 281
  • [27] Distant Supervision for Keyphrase Extraction using Search Queries
    Shalom, Oren Sar
    Resheff, Hezi
    Zhicharevich, Alex
    Cohen, Rami
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 70 - 77
  • [28] A review of keyphrase extraction
    Papagiannopoulou, Eirini
    Tsoumakas, Grigorios
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
  • [29] Web document clustering by using automatic keyphrase extraction
    Flan, Juhyun
    Kim, Taehwan
    Choi, Joongmin
    PROCEEDING OF THE 2007 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WORKSHOPS, 2007, : 56 - 59
  • [30] Improved Automatic Keyphrase Extraction by Using Semantic Information
    Wang, XiaoLing
    Mu, DeJun
    Fang, Jun
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 1061 - 1065