ON A GENERALIZED CANONICAL BUNDLE FORMULA FOR GENERICALLY FINITE MORPHISMS

被引:0
|
作者
Han, Jingjun [1 ,2 ,3 ]
Liu, Wenfei [4 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Math Sci Res Inst, Berkeley, CA 94720 USA
[4] Xiamen Univ, Sch Math Sci, Siming South Rd 422, Xiamen 361005, Fujian, Peoples R China
关键词
generalized pair; canonical bundle formula; subadjunction; ABUNDANCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a canonical bundle formula for generically finite morphisms in the setting of generalized pairs (with R-coefficients). This complements Filipazzi's canonical bundle formula for morphisms with connected fibres. It is then applied to obtain a subadjunction formula for log canonical centers of generalized pairs. As another application, we show that the image of an anti-nef log canonical generalized pair has the structure of a numerically trivial log canonical generalized pair. This readily implies a result of Chen-Zhang. Along the way we prove that the Shokurov type convex sets for anti-nef log canonical divisors are indeed rational polyhedral sets.
引用
收藏
页码:2047 / 2077
页数:32
相关论文
共 50 条
  • [41] Deformation of canonical morphisms and the moduli of surfaces of general type
    Javier Gallego, Francisco
    Gonzalez, Miguel
    Purnaprajna, Bangere P.
    INVENTIONES MATHEMATICAE, 2010, 182 (01) : 1 - 46
  • [42] Lagrangians and Euler morphisms from connections on the frame bundle
    Kurek, J.
    Mikulski, W. M.
    XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2011, 1360 : 139 - 144
  • [43] Canonical Heights and the Arithmetic Complexity of Morphisms on Projective Space
    Kawaguchi, Shu
    Silverman, Joseph H.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2009, 5 (04) : 1201 - 1217
  • [44] Deformation of canonical morphisms and the moduli of surfaces of general type
    Francisco Javier Gallego
    Miguel González
    Bangere P. Purnaprajna
    Inventiones mathematicae, 2010, 182 : 1 - 46
  • [45] Characteristic morphisms of generalized episturmian words
    Bucci, Michelangelo
    de Luca, Aldo
    De Luca, Alessandro
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (30-32) : 2840 - 2859
  • [46] On generalized f-harmonic morphisms
    Cherif, A. Mohammed
    Mustapha, Djaa
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (01): : 17 - 27
  • [47] On Canonical Bundle Formulas and Subadjunctions
    Fujino, Osamu
    Gongyo, Yoshinori
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (02) : 255 - 264
  • [48] Dynamics of projective morphisms having identical canonical heights
    Kawaguchi, Shu
    Silverman, Joseph H.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 95 : 519 - 544
  • [49] The canonical bundle of a hermitian manifold
    Bor, G
    Hernández-Lamoneda, L
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 187 - 198
  • [50] Generalized negligible morphisms and their tensor ideals
    Thorsten Heidersdorf
    Hans Wenzl
    Selecta Mathematica, 2022, 28