Numerical continuation of homo/heteroclinic orbits with an oscillatory approach to stationary point

被引:0
|
作者
Kohout, M [1 ]
Schreiber, I [1 ]
Kubícek, M [1 ]
机构
[1] Prague Inst Chem Technol, Dept Chem Engn, CZ-16628 Prague 6, Czech Republic
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a boundary value problem to locate homoclinic or heteroclinic orbits approaching a stationary paint in an oscillatory manner so that velocity vectors on the orbit close to the stationary point are used rather than eigenvectors. A Newton method combined with multiple shooting can be used to numerically find the orbit truncated to a finite time interval. This is an extension of an earlier method proposed for 'nonoscillatory' homo/heteroclinics [1, 2]. We have incorporated this procedure into a continuation algorithm, so that a parameter dependence can be obtained. The method has been applied to Rossler system and can be applied to travelling waves.
引用
收藏
页码:S615 / S616
页数:2
相关论文
共 50 条
  • [21] Numerical continuation of degenerate homoclinic orbits in planar systems
    Freire, E
    Pizarro, L
    Rodríguez-Luis, AJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (01) : 51 - 75
  • [22] Numerical continuation of branch points of equilibria and periodic orbits
    Doedel, EJ
    Govaerts, W
    Kuznetsov, YA
    Dhooge, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 841 - 860
  • [23] GEOMETRY AND NUMERICAL CONTINUATION OF MULTISCALE ORBITS IN A NONCONVEX VARIATIONAL PROBLEM
    Iuorio, Annalisa
    Kuehn, Christian
    Szmolyan, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (04): : 1269 - 1290
  • [24] Numerical continuation of families of homoclinic connections of periodic orbits in the RTBP
    Barrabes, E.
    Mondelo, J. M.
    Olle, M.
    NONLINEARITY, 2009, 22 (12) : 2901 - 2918
  • [25] A picture of solar -sail heteroclinic enhanced connections between Lissajous libration point orbits
    Duan, Xun
    Gomez, Gerard
    Masdemont, Josep J.
    Yue, Xiaokui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85 (85):
  • [26] TRAVELING WAVES IN DIFFUSIVE PREDATOR-PREY EQUATIONS - PERIODIC-ORBITS AND POINT-TO-PERIODIC HETEROCLINIC ORBITS
    DUNBAR, SR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (06) : 1057 - 1078
  • [27] Numerical continuation of canard orbits in slow-fast dynamical systems
    Desroches, M.
    Krauskopf, B.
    Osinga, H. M.
    NONLINEARITY, 2010, 23 (03) : 739 - 765
  • [28] Traveling waves in a diffusive predator-prey system of Holling type: Point-to-point and point-to-periodic heteroclinic orbits
    Wu, Chufen
    Yang, Yong
    Weng, Peixuan
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 43 - 53
  • [29] A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits
    Krauskopf, Bernd
    Riess, Thorsten
    NONLINEARITY, 2008, 21 (08) : 1655 - 1690
  • [30] Numerical continuation of homoclinic orbits to non-hyperbolic equilibria in planar systems
    Freire, E
    Pizarro, L
    Rodríguez-Luis, AJ
    NONLINEAR DYNAMICS, 2000, 23 (04) : 353 - 375