Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals

被引:215
|
作者
Zhao, Bo [1 ]
Guo, Cheng [2 ]
Garcia, Christina A. C. [3 ]
Narang, Prineha [3 ]
Fan, Shanhui [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Ginzton Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
thermal radiation; nonreciprocity; Weyl semimetals; topological materials; magneto-optical effects; DISCOVERY; FERMIONS; PHASE;
D O I
10.1021/acs.nanolett.9b05179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Objects around us constantly emit and absorb thermal radiation. The emission and absorption processes are governed by two fundamental radiative properties: emissivity and absorptivity. For reciprocal systems, the emissivity and absorptivity are restricted to be equal by Kirchhoff's law of thermal radiation. This restriction limits the degree of freedom to control thermal radiation and contributes to an intrinsic loss mechanism in photonic energy harvesting systems. Existing approaches to violate KirchhofFs law typically utilize magneto-optical effects with an external magnetic field. However, these approaches require either a strong magnetic field (similar to 3T) or narrow-band resonances under a moderate magnetic field (similar to 0.3T), because the nonreciprocity in conventional magneto-optical effects is weak in the thermal wavelength range. Here, we show that the axion electrodynamics in magnetic Weyl semimetals can be used to construct strongly nonreciprocal thermal emitters that nearly completely violate Kirchhoff's law over broad angular and frequency ranges without requiring any external magnetic field.
引用
收藏
页码:1923 / 1927
页数:5
相关论文
共 50 条
  • [41] Quantum description of Fermi arcs in Weyl semimetals in a magnetic field
    Bauer, Tim
    Buccheri, Francesco
    De Martino, Alessandro
    Egger, Reinhold
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [42] Effects of anisotropy on the high-field magnetoresistance of Weyl semimetals
    Dotdaev, A. S.
    Rodionov, Ya. I.
    Kugel, K. I.
    Aronzon, B. A.
    PHYSICAL REVIEW B, 2023, 108 (16)
  • [43] Nonmonotonic Hall Effect of Weyl Semimetals under a Magnetic Field
    Zhang, Xiao-Xiao
    Nagaosa, Naoto
    PHYSICAL REVIEW LETTERS, 2024, 133 (16)
  • [44] Klein tunneling in Weyl semimetals under the influence of magnetic field
    Yesilyurt, Can
    Tan, Seng Ghee
    Liang, Gengchiau
    Jalil, Mansoor B. A.
    SCIENTIFIC REPORTS, 2016, 6
  • [45] Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field
    Kim, Pilkwang
    Ryoo, Ji Hoon
    Park, Cheol-Hwan
    PHYSICAL REVIEW LETTERS, 2017, 119 (26)
  • [46] Weyl semimetals in circularly-polarized ultrafast laser field
    Nematollahi, Fatemeh
    Apalkov, Vadym
    Stockman, Mark, I
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XIX, 2019, 10908
  • [47] Extreme Nonreciprocal Near-Field Thermal Radiation via Floquet Photonics
    Fernandez-Alcazar, Lucas J.
    Kononchuk, Rodion
    Li, Huanan
    Kottos, Tsampikos
    PHYSICAL REVIEW LETTERS, 2021, 126 (20)
  • [48] Prism-enhanced wide-angle broadband nonreciprocal thermal radiation in a Weyl semimetal grating structure
    Liu, Zhicheng
    Li, Haohang
    Xiao, Jinjie
    Luo, Fuyong
    Chen, Junshen
    Cui, Ruoheng
    Li, Zhiqi
    Shen, Jian
    Li, Chaoyang
    OPTICS EXPRESS, 2024, 32 (17): : 30642 - 30653
  • [49] Tunable near-perfect nonreciprocal radiation with a Weyl semimetal and graphene
    Wu, Jun
    Qing, Ye Ming
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (13) : 9586 - 9591
  • [50] Asymmetric thermal transport in strained Weyl semimetals due to axial anomaly
    Makhfudz, Imam
    Hajati, Yaser
    PHYSICAL REVIEW B, 2021, 103 (21)