Outstanding Strengthening and Toughening Behavior of 3D-Printed Fiber-Reinforced Composites Designed by Biomimetic Interfacial Heterogeneity

被引:16
|
作者
Yu, Siwon [1 ,2 ]
Hwang, Yun Hyeong [2 ]
Lee, Kang Taek [3 ]
Kim, Sang Ouk [4 ]
Hwang, Jun Yeon [2 ]
Hong, Soon Hyung [1 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Natl Creat Res Initiat Ctr Multidimens Nanoscale, 291 Daehak Ro, Daejeon 34141, South Korea
[5] Jiaxing Univ, Nanotechnol Res Inst, Jiaxing, Peoples R China
基金
新加坡国家研究基金会;
关键词
3D printing; composites; fiber alignment; hierarchical structures; interfacial heterogeneity; MECHANICAL-PROPERTIES; MATRIX COMPOSITES; CARBON; ACID);
D O I
10.1002/advs.202103561
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing of fiber-reinforced composites is expected to be the forefront technology for the next-generation high-strength, high-toughness, and lightweight structural materials. The intrinsic architecture of 3D-printed composites closely represents biomimetic micro/macrofibril-like hierarchical structure composed of intermediate filament assembly among the micron-sized reinforcing fibers, and thus contributes to a novel mechanism to simultaneously improve mechanical properties and structural features. Notably, it is found that an interfacial heterogeneity between numerous inner interfaces in the hierarchical structure enables an exceptional increase in the toughness of composites. The strong interfacial adhesion between the fibers and matrix, with accompanying the inherently weak interfacial adhesion between intermediate filaments and the resultant interfacial voids, provide a close representation of the toughness behavior of natural architectures relying on the localized heterogeneity. Given the critical embedment length of fiber reinforcement, extraordinary improvement has been attained not only in the strength but also in toughness taking advantage of the synergy effect from the aforementioned nature-inspired features. Indeed, the addition of a small amount of short fiber to the brittle bio-filaments results in a noticeable increase of more than 200% in the tensile strength and modulus with further elongation increment. This article highlights the inherent structural hierarchy of 3D-printed composites and the relevant sophisticated mechanism for anomalous mechanical reinforcement.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Auxetic behavior of 3D-printed structure made in acrylonitrile butadiene styrene and carbon fiber-reinforced polyamide
    Pellegrini, Alessandro
    Palmieri, Maria Emanuela
    Lavecchia, Fulvio
    Tricarico, Luigi
    Galantucci, Luigi Maria
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (02) : 461 - 469
  • [32] Experimental study on the strengthening mechanism of carbon fiber-reinforced sand powder 3D-printed rock-like materials
    Jiang, Lishuai
    He, Xin
    Zhao, Ye
    Li, Pimao
    Zhao, Yang
    Wang, Zongke
    Guo, Dingrui
    Gu, Qi
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [33] Materials, Performance Studies, and Application Progress of Fiber-Reinforced 3D-Printed Concrete
    Yang, Jie
    Xu, Ke
    He, Haijie
    JOURNAL OF TESTING AND EVALUATION, 2025,
  • [34] Interfacial design and damage of fiber-reinforced polymer composites/strengthening concrete: a review
    Zhang, Hui
    Pei, Xiaoyuan
    Yang, Zhengxin
    Luo, Shigang
    Yan, Minjie
    Liu, Liangsen
    Xu, Zhiwei
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (16) : 6645 - 6661
  • [35] Shrinkage and Cracking Performance of PP/PVA Fiber-Reinforced 3D-Printed Mortar
    Wang, Li
    Hu, Yuanyuan
    Wang, Qiao
    Cui, Tianlong
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (06)
  • [36] Interfacial Transcrystallization and Mechanical Performance of 3D-Printed Fully Recyclable Continuous Fiber Self-Reinforced Composites
    Zhang, Manyu
    Tian, Xiaoyong
    Li, Dichen
    POLYMERS, 2021, 13 (18)
  • [37] Interfacial design and damage of fiber-reinforced polymer composites/strengthening concrete: a review
    Hui Zhang
    Xiaoyuan Pei
    Zhengxin Yang
    Shigang Luo
    Minjie Yan
    Liangsen Liu
    Zhiwei Xu
    Journal of Materials Science, 2024, 59 : 6645 - 6661
  • [38] An experimental study on 3D-printed continuous fiber-reinforced composite auxetic structures
    Liu, Peiqing
    Liu, Jikai
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2023, 2 (04):
  • [39] Effect of printing parameters on 3D-printed carbon fiber-reinforced polymer composites under magnetic field control
    Lian, Kaipeng
    Yang, Li
    Zhu, Dongyue
    Gong, Xuebin
    Zhang, Haoran
    Wang, Kaifeng
    Li, Jingjing
    Yu, Wenqiang
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 101 : 1443 - 1452
  • [40] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    De la Fuente, Andres
    Castillo, Rodrigo
    Onate, Angelo
    Hermosilla, Rodolfo
    Escudero, Benjamin
    Sepulveda, Joaquin
    Vargas-Silva, Gustavo
    Melendrez, Manuel F.
    Tuninetti, Victor
    Medina, Carlos
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4): : 1575 - 1583