SOLUTIONS TO A MODEL FOR COMPRESSIBLE IMMISCIBLE TWO PHASE FLOW IN POROUS MEDIA

被引:0
|
作者
Khalil, Ziad [1 ]
Saad, Mazen [1 ]
机构
[1] Ecole Cent Nantes, Lab Math Jean Leray, UMR CNRS 6629, F-44321 Nantes, France
关键词
Degenerate system; nonlinear parabolic system; compressible flow; porous media; MISCIBLE DISPLACEMENT; MATHEMATICAL-ANALYSIS; EXISTENCE; SYSTEM; FLUIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of solutions to a nonlinear degenerate system modelling the displacement of two-phase compressible immiscible flow in a three dimensional porous media. The aim of this work is to treat the model with its general form with the whole nonlinear terms. Especially, we consider the case where the density of each phase depends on its corresponding pressure. We derive new energy estimates on velocities, saturations and pressures to treat the degeneracy of the system. A compactness result is shown for degenerate systems.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Stochastic analysis of two-phase immiscible flow in stratified porous media
    Artus, Vincent
    Furtado, Frederico
    Noetinger, Benoit
    Pereira, Felipe
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 153 - 172
  • [42] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212
  • [43] A Semi-Analytical Model for Two Phase Immiscible Flow in Porous Media Honouring Capillary Pressure
    F. Hussain
    Y. Cinar
    P. Bedrikovetsky
    Transport in Porous Media, 2012, 92 : 187 - 212
  • [44] A Semi-Analytical Model for Two Phase Immiscible Flow in Porous Media Honouring Capillary Pressure
    Hussain, F.
    Cinar, Y.
    Bedrikovetsky, P.
    TRANSPORT IN POROUS MEDIA, 2012, 92 (01) : 187 - 212
  • [45] Degenerate two-phase compressible immiscible flow in porous media: The case where the density of each phase depends on its own pressure
    Khalil, Ziad
    Saad, Mazen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2225 - 2233
  • [46] Homogenization of compressible two-phase two-component flow in porous media
    Amaziane, B.
    Pankratov, L.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 213 - 235
  • [47] Analysis of nonequilibrium effects and flow instability in immiscible two-phase flow in porous media
    Wang, Yuhang
    Aryana, Saman A.
    Furtado, Frederico
    Ginting, Victor
    ADVANCES IN WATER RESOURCES, 2018, 122 : 291 - 303
  • [48] A NON-ISOTHERMAL TWO-PHASE FLOW MODEL FOR COMPRESSIBLE, SUPERCRITICAL FLUIDS IN POROUS MEDIA
    Boettcher, Norbert
    Park, Chan-Hee
    Kolditz, Olaf
    Liedl, Rudolf
    PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 271 - 278
  • [49] Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (01) : 99 - 114
  • [50] A virtual element method for the two-phase flow of immiscible fluids in porous media
    Berrone, Stefano
    Busetto, Martina
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (01) : 195 - 216