SOLUTIONS TO A MODEL FOR COMPRESSIBLE IMMISCIBLE TWO PHASE FLOW IN POROUS MEDIA

被引:0
|
作者
Khalil, Ziad [1 ]
Saad, Mazen [1 ]
机构
[1] Ecole Cent Nantes, Lab Math Jean Leray, UMR CNRS 6629, F-44321 Nantes, France
关键词
Degenerate system; nonlinear parabolic system; compressible flow; porous media; MISCIBLE DISPLACEMENT; MATHEMATICAL-ANALYSIS; EXISTENCE; SYSTEM; FLUIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of solutions to a nonlinear degenerate system modelling the displacement of two-phase compressible immiscible flow in a three dimensional porous media. The aim of this work is to treat the model with its general form with the whole nonlinear terms. Especially, we consider the case where the density of each phase depends on its corresponding pressure. We derive new energy estimates on velocities, saturations and pressures to treat the degeneracy of the system. A compactness result is shown for degenerate systems.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Existence of weak solutions for nonisothermal immiscible compressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [2] Slightly compressible and immiscible two-phase flow in porous media
    Saad, Mazen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 12 - 26
  • [3] AN IMPROVED HOMOGENIZATION RESULT FOR IMMISCIBLE COMPRESSIBLE TWO PHASE FLOW IN POROUS MEDIA
    Amaziane, Brahim
    Pankratov, Leonid
    Piatnitski, Andrey
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (01) : 147 - 171
  • [4] A new formulation of immiscible compressible two-phase flow in porous media
    Amaziane, Brahim
    Jurak, Mladen
    COMPTES RENDUS MECANIQUE, 2008, 336 (07): : 600 - 605
  • [5] Homogenization of immiscible compressible two-phase flow in random porous media
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 206 - 223
  • [6] Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media
    Jurak, Mladen
    Koldoba, Alexandre
    Konyukhov, Andrey
    Pankratov, Leonid
    COMPTES RENDUS MECANIQUE, 2019, 347 (12): : 920 - 929
  • [7] Homogenization of coupled immiscible compressible two-phase flow with kinetics in porous media
    Amaziane, B.
    Pankratov, L.
    APPLICABLE ANALYSIS, 2022, 101 (01) : 241 - 262
  • [8] A macroscopic model for immiscible two-phase flow in porous media
    Lasseux, Didier
    Valdes-Parada, Francisco J.
    JOURNAL OF FLUID MECHANICS, 2022, 944
  • [9] TWO PHASE COMPRESSIBLE FLOW IN POROUS MEDIA
    应隆安
    ActaMathematicaScientia, 2011, 31 (06) : 2159 - 2168
  • [10] TWO PHASE COMPRESSIBLE FLOW IN POROUS MEDIA
    Ying Lung-an
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (06) : 2159 - 2168