A SIZE-DEPENDENT MODEL FOR WAVE PROPAGATION IN TIMOSHENKO NANOBEAM

被引:0
|
作者
Liang, Bin-bin [1 ]
Zhang, Long [1 ]
Wang, Bing-lei [1 ,2 ]
机构
[1] Shandong Univ, Dept Engn Mech, Jinan 250061, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Sch Aerosp, Xian 710049, Peoples R China
来源
2014 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA) | 2014年
关键词
Wave propagation; Size-dependent; Timoshenko nanobeam; Strain gradient elasticity theory;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By incorporating the strain gradient elasticity into the Timoshenko nanobeam, a size-dependent model for wave propagation in such nanobeam is developed. The formulations of dispersion relation are explicitly derived for strain gradient nanobeam and presented for different material length scale parameters (MLSPs). The size-dependent characteristics of wave propagation in Timoshenko nanobeam are then studied. The results show that the angular frequency, phase velocity and group velocity increase with increasing wave number. However, the velocity ratios approach different values for different beam modes, indicating an interesting behavior of the asymptotic velocity ratio.
引用
收藏
页码:210 / 213
页数:4
相关论文
共 50 条
  • [31] Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes' damping model
    Yu, Y. Jun
    Tian, Xiao-Geng
    Liu, Jie
    ACTA MECHANICA, 2017, 228 (04) : 1287 - 1302
  • [32] Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes’ damping model
    Y. Jun Yu
    Xiao-Geng Tian
    Jie Liu
    Acta Mechanica, 2017, 228 : 1287 - 1302
  • [33] Development of size-dependent consistent couple stress theory of Timoshenko beams
    Alavi, Seyed Ehsan
    Sadighi, Mojtaba
    Pazhooh, Mitra Danesh
    Ganghoffer, Jean-Francois
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 685 - 712
  • [34] Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams
    Ansari, R.
    Shojaei, M. Faghih
    Gholami, R.
    Mohammadi, V.
    Darabi, M. A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 50 : 127 - 135
  • [35] Size-dependent wave propagation in two-dimensional functionally graded lattice materials
    Sepehri, Soroush
    Mashhadi, Mahmoud Mosavi
    Fakhrabadi, Mir Masoud Seyyed
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 232
  • [36] The role of defected/wavy/aggregated CNTs on the wave propagation in size-dependent nanocomposite beams
    Taheri, Keivan
    Afsari, Ahmad
    Janghorban, Maziar
    Heidari, Farshad
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [37] A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams
    Karami, Behrouz
    Janghorban, Maziar
    STEEL AND COMPOSITE STRUCTURES, 2019, 32 (02): : 213 - 223
  • [38] Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory
    Liu, Ning
    Fu, Li-Yun
    Tang, Gang
    Kong, Yue
    Xu, Xiao-Yi
    ACTA MECHANICA, 2020, 231 (04) : 1285 - 1304
  • [39] Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory
    Ning Liu
    Li-Yun Fu
    Gang Tang
    Yue Kong
    Xiao-Yi Xu
    Acta Mechanica, 2020, 231 : 1285 - 1304
  • [40] On size-dependent wave propagation of flexoelectric nanoshells interacted with internal moving fluid flow
    Ardalani, Amir-Reza Asghari
    Amiri, Ahad
    Talebitooti, Roohollah
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,