Prediction of rainfall using artificial neural networks for synoptic station of Mashhad: a case study

被引:22
|
作者
Khalili, Najmeh [1 ]
Khodashenas, Saeed Reza [1 ]
Davary, Kamran [1 ]
Baygi, Mohammad Mousavi [1 ]
Karimaldini, Fatemeh [2 ]
机构
[1] Ferdowsi Univ Mashhad, Water Engn Dept, Mashhad, Iran
[2] Univ Putra Malaysia, Dept Agr & Biol, Fac Engn, Serdang, Malaysia
关键词
Artificial neural networks; Mashhad synoptic station; Rainfall prediction;
D O I
10.1007/s12517-016-2633-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we have utilized ANN (artificial neural network) modeling for the prediction of monthly rainfall in Mashhad synoptic station which is located in Iran. To achieve this black-box model, we have used monthly rainfall data from 1953 to 2003 for this synoptic station. First, the Hurst rescaled range statistical (R/S) analysis is used to evaluate the predictability of the collected data. Then, to extract the rainfall dynamic of this station using ANN modeling, a three-layer feed-forward perceptron network with back propagation algorithm is utilized. Using this ANN structure as a black-box model, we have realized the complex dynamics of rainfall through the past information of the system. The approach employs the gradient decent algorithm to train the network. Trying different parameters, two structures, M-531 and M-741, have been selected which give the best estimation performance. The performance statistical analysis of the obtained models shows with the best tuning of the developed monthly prediction model the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) are 0.93, 0.99, and 6.02 mm, respectively, which confirms the effectiveness of the developed models.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [22] Case study on human reliability using artificial neural networks
    Zhang, ZC
    Vanderhaegen, F
    Millot, P
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 4794 - 4799
  • [23] Using artificial neural networks to estimate missing rainfall data
    Kuligowski, RJ
    Barros, AP
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 1998, 34 (06): : 1437 - 1447
  • [24] RAINFALL-RUNOFF MODELING USING ARTIFICIAL NEURAL NETWORKS
    Tokar, A. Sezin
    Johnson, Peggy A.
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (03) : 232 - 239
  • [25] Rainfall runoff modeling using artificial neural networks - Discussion
    Kumar, A
    Minocha, VK
    JOURNAL OF HYDROLOGIC ENGINEERING, 2001, 6 (02) : 176 - 177
  • [26] Medium Term Forecasting of Rainfall using Artificial Neural Networks
    Iseri, Y.
    Dandy, G. C.
    Maier, H. R.
    Kawamura, A.
    Jinno, K.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 1834 - 1840
  • [27] Monthly Monsoon Rainfall Forecasting using Artificial Neural Networks
    Ganti, Ravikumar
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 807 - 810
  • [28] Hydropower production prediction using artificial neural networks: an Ecuadorian application case
    Julio Barzola-Monteses
    Juan Gómez-Romero
    Mayken Espinoza-Andaluz
    Waldo Fajardo
    Neural Computing and Applications, 2022, 34 : 13253 - 13266
  • [29] Hydropower production prediction using artificial neural networks: an Ecuadorian application case
    Barzola-Monteses, Julio
    Gomez-Romero, Juan
    Espinoza-Andaluz, Mayken
    Fajardo, Waldo
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13253 - 13266
  • [30] PREDICTION OF PENETRATION RATE OF ROTARY-PERCUSSIVE DRILLING USING ARTIFICIAL NEURAL NETWORKS - A CASE STUDY
    Aalizad, Seyed Ali
    Rashidinejad, Farshad
    ARCHIVES OF MINING SCIENCES, 2012, 57 (03) : 715 - 728