An iterative regularization method for total variation-based image restoration

被引:1367
|
作者
Osher, S
Burger, M
Goldfarb, D
Xu, JJ
Yin, WT
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
[3] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
来源
MULTISCALE MODELING & SIMULATION | 2005年 / 4卷 / 02期
关键词
iterative regularization; total variation; Bregman distances; denoising; deblurring;
D O I
10.1137/040605412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods by using total variation regularization. We obtain rigorous convergence results and effective stopping criteria for the general procedure. The numerical results for denoising appear to give significant improvement over standard models, and preliminary results for deblurring/denoising are very encouraging.
引用
收藏
页码:460 / 489
页数:30
相关论文
共 50 条
  • [21] Adaptive Box-Constrained Total Variation Image Restoration Using Iterative Regularization Parameter Adjustment Method
    Zhu, Zhining
    Cai, Guangcheng
    Wen, You-Wei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (07)
  • [22] Spatially dependent regularization parameter selection for total generalized variation-based image denoising
    Ma, Tian-Hui
    Huang, Ting-Zhu
    Zhao, Xi-Le
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 277 - 296
  • [23] A fast Total Variation-based iterative algorithm for digital breast tomosynthesis image reconstruction
    Piccolomini, E. Loli
    Morotti, E.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2016, 10 (04) : 277 - 289
  • [24] An adaptive image restoration algorithm based on hybrid total variation regularization
    Pham, Cong Thang
    Tran, Thi Thu Thao
    Dang, Hung Vi
    Dang, Hoai Phuong
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (01) : 1 - 16
  • [25] Blurred image restoration method based on second-order total generalized variation regularization
    Ren, Fu-Quan
    Qiu, Tian-Shuang
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (06): : 1166 - 1172
  • [26] Second-order cone programming methods for total variation-based image restoration
    Goldfarb, D
    Yin, WT
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02): : 622 - 645
  • [27] A new difference of anisotropic and isotropic total variation regularization method for image restoration
    Zhang, Benxin
    Wang, Xiaolong
    Li, Yi
    Zhu, Zhibin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14777 - 14792
  • [28] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [29] Anisotropic Total Variation Regularization Based NAS-RIF Blind Restoration Method for OCT Image
    Xuesong Fu
    Jianlin Wang
    Zhixiong Hu
    Yongqi Guo
    Kepeng Qiu
    Rutong Wang
    Journal of Beijing Institute of Technology, 2020, 29 (02) : 146 - 157
  • [30] Anisotropic Total Variation Regularization Based NAS-RIF Blind Restoration Method for OCT Image
    Fu X.
    Wang J.
    Hu Z.
    Guo Y.
    Qiu K.
    Wang R.
    Journal of Beijing Institute of Technology (English Edition), 2020, 29 (02): : 146 - 157