Second Law of Entanglement Dynamics for the Non-Asymptotic Regime

被引:1
|
作者
Wilde, Mark M. [1 ,2 ]
机构
[1] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词
QUANTUM; RATES; STATE;
D O I
10.1109/ITW48936.2021.9611411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The distillable entanglement of a bipartite quantum state does not exceed its entanglement cost. This well known inequality can be understood as a second law of entanglement dynamics in the asymptotic regime of entanglement manipulation, excluding the possibility of perpetual entanglement extraction machines that generate boundless entanglement from a finite reserve. In this paper, I establish a refined second law of entanglement dynamics that holds for the non-asymptotic regime of entanglement manipulation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] DEFECTIVE NON-ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS
    GOLDBERG, AA
    DOKLADY AKADEMII NAUK SSSR, 1966, 171 (02): : 254 - &
  • [32] Non-asymptotic approach to varying coefficient model
    Klopp, Olga
    Pensky, Marianna
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 454 - 479
  • [33] Non-Asymptotic Error Bounds for Bidirectional GANs
    Liu, Shiao
    Yang, Yunfei
    Huang, Jian
    Jiao, Yuling
    Wang, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [34] On the genericity of some non-asymptotic dynamical properties
    Ageev, ON
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 173 - 174
  • [35] A Tutorial on the Non-Asymptotic Theory of System Identification
    Ziemann, Ingvar
    Tsiamis, Anastasios
    Lee, Bruce
    Jedra, Yassir
    Matni, Nikolai
    Pappas, George J.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8921 - 8939
  • [36] Non-Asymptotic Pure Exploration by Solving Games
    Degenne, Remy
    Koolen, Wouter M.
    Menard, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [37] Application of non-asymptotic models for the NPP system
    Antonov, AV
    Volnikov, IS
    Dagaev, AV
    SAFETY AND RELIABILITY, VOLS 1 & 2, 1999, : 969 - 974
  • [38] Non-asymptotic analysis of tangent space perturbation
    Kaslovsky, Daniel N.
    Meyer, Francois G.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (02) : 134 - 187
  • [39] Non-Asymptotic Confidence Sets for Circular Means
    Hotz, Thomas
    Kelma, Florian
    Wieditz, Johannes
    ENTROPY, 2016, 18 (10)
  • [40] Optimal Non-Asymptotic Bounds for the Sparse β Model
    Yang, Xiaowei
    Pan, Lu
    Cheng, Kun
    Liu, Chao
    MATHEMATICS, 2023, 11 (22)