Tunable Phase Shifter Based on Inkjet-Printed Ferroelectric MIM Varactors

被引:0
|
作者
Nikfalazar, Mohammad [1 ]
Wiens, Alex [1 ]
Mikolajek, Morten [2 ]
Friederich, Andreas [2 ]
Kohler, Christian [2 ]
Sohrabi, Mojtaba [1 ]
Zheng, Yuliang [1 ]
Kienemund, Daniel [1 ]
Melnyk, Sergiy [1 ]
Binder, Joachim R. [2 ]
Jakoby, Rolf [1 ]
机构
[1] Tech Univ Darmstadt, D-64283 Darmstadt, Germany
[2] Karlsruhe Inst Technol, Inst Appl Mat, D-76344 Eggenstein Leopoldshafen, Germany
关键词
metal insulator metal (MIM); inkjet printing; barium-strontium-titanate; phase shifter; thick-films;
D O I
10.1515/freq-2014-0120
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new method for the fabrication of tunable multilayer ferroelectric components based on inkjet printing. Inkjet printing is a low-cost technology for selective film fabrication and has high potential for the preparation of tunable dielectric layers for radio frequency and microwave applications. With this technology, tunable metal-insulator-metal (MIM) capacitor is fabricated, that is composed of inkjet-printed Barium-Strontium-Titanate striplines and photo-lithographically structured gold electrodes. Compared to coplanar capacitors, such MIM varactors require significantly lower DC-voltage for tuning. By applying 20 V across a 1 mu m-thick BST film, a tunability of 33% is achieved at 8 GHz and tunability of 60% by applying 50 V. To demonstrate the field of application of this MIM varactor, a tunable phase shifter is designed and fabricated at 8 GHz. A phase shift of 143 degrees and a figure of merit (FoM) of 28 degrees/dB are achieved by applying maximum 50 V tuning voltage.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [41] Inkjet-Printed Indium Oxide/Carbon Nanotube Heterojunctions for Gate-Tunable Diodes
    Kim, Bongjun
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01):
  • [42] A Fully Inkjet-Printed Strain Sensor Based on Carbon Nanotubes
    Kao, Hsuan-Ling
    Cho, Cheng-Lin
    Chang, Li-Chun
    Chen, Chun-Bing
    Chung, Wen-Hung
    Tsai, Yun-Chen
    COATINGS, 2020, 10 (08)
  • [43] Paper-Based Inkjet-Printed Flexible Electronic Circuits
    Wang, Yan
    Guo, Hong
    Chen, Jin-ju
    Sowade, Enrico
    Wang, Yu
    Liang, Kun
    Marcus, Kyle
    Baumann, Reinhard R.
    Feng, Zhe-sheng
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (39) : 26112 - 26118
  • [44] Paper-Based Inkjet-Printed Microfluidic Analytical Devices
    Yamada, Kentaro
    Henares, Terence G.
    Suzuki, Koji
    Citterio, Daniel
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5294 - 5310
  • [45] State-of-the-Art Inkjet-Printed Metal-Insulator-Metal (MIM) Capacitors on Silicon Substrate
    Mariotti, Chiara
    Cook, Benjamin S.
    Roselli, Luca
    Tentzeris, Manos M.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (01) : 13 - 15
  • [46] Characteristics of inkjet-printed separators in grapheme-based supercapacitors
    Yang, Y. S.
    You, I. -K.
    Hong, S. -H.
    Yun, H. -G.
    SEMICONDUCTORS, DIELECTRICS, AND METALS FOR NANOELECTRONICS 12, 2014, 64 (08): : 135 - 137
  • [47] All Inkjet-Printed Temperature Sensors Based on PEDOT:PSS
    Khalaf, Ayatallah M.
    Issa, Hanady Hussien
    Ramirez, Jose Luis
    Mohamed, Shaimaa Ali
    IEEE ACCESS, 2022, 10 (61094-61100): : 61094 - 61100
  • [48] Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices
    Robin, Malo
    Kuai, Wenlin
    Amela-Cortes, Maria
    Cordier, Stephane
    Molard, Yann
    Mohammed-Brahim, Tayeb
    Jacques, Emmanuel
    Harnois, Maxime
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (39) : 21975 - 21984
  • [49] Fully Printed Varactors and Phase Shifters Based on a BST/Polymer Ink for Tunable Microwave Applications
    Haghzadeh, Mandi
    Armiento, Craig
    Akyurtlu, Alkim
    2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2016,
  • [50] All-Printed Flexible Microwave Varactors and Phase Shifters Based on a Tunable BST/Polymer
    Haghzadeh, Mahdi
    Armiento, Craig
    Akyurtlu, Alkim
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (06) : 2030 - 2042