Model-based segmentation of spatial cylindrical data

被引:10
|
作者
Lagona, Francesco [1 ]
Picone, Marco [2 ]
机构
[1] Univ Roma Tre, Dept Polit Studies, Rome, Italy
[2] Inst Environm Protect & Res, Rome, Italy
关键词
Abe-Ley density; Adriatic sea; cylindrical data; EM algorithm; hidden Markov randomfield; marine currents; mean-field approximation; SPACE;
D O I
10.1080/00949655.2015.1122791
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new hidden Markov random field model is proposed for the analysis of cylindrical spatial series, i.e. bivariate spatial series of intensities and angles. It allows us to segment cylindrical spatial series according to a finite number of latent classes that represent the conditional distributions of the data under specific environmental conditions. The model parsimoniously accommodates circular-linear correlation, multimodality, skewness and spatial autocorrelation. A numerically tractable expectation-maximization algorithm is provided to compute parameter estimates by exploiting a mean-field approximation of the complete-data log-likelihood function. These methods are illustrated on a case study of marine currents in the Adriatic sea.
引用
收藏
页码:2598 / 2610
页数:13
相关论文
共 50 条
  • [21] The role of model-based segmentation in the recovery of volumetric parts from range data
    Dickinson, SJ
    Metaxas, D
    Pentland, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (03) : 259 - 267
  • [22] Elastic model-based segmentation of 3-D neuroradiological data sets
    Kelemen, A
    Székely, G
    Gerig, G
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (10) : 828 - 839
  • [23] A model-based circular binary segmentation algorithm for the analysis of array CGH data
    Hsu F.-H.
    Chen H.-I.H.
    Tsai M.-H.
    Lai L.-C.
    Huang C.-C.
    Tu S.-H.
    Chuang E.Y.
    Chen Y.
    BMC Research Notes, 4 (1)
  • [24] Feature-driven Model-Based Segmentation
    Qazi, Arish A.
    Kim, John
    Jaffray, David A.
    Pekar, Vladimir
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [25] A model-based vehicle segmentation method for tracking
    Song, XF
    Nevatia, R
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1124 - 1131
  • [26] Model-Based Segmentation Using Graph Representations
    Seghers, D.
    Hermans, J.
    Loeckx, D.
    Maes, F.
    Vandermeulen, D.
    Suetens, P.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 393 - +
  • [27] ON THE PERFORMANCE OF STOCHASTIC MODEL-BASED IMAGE SEGMENTATION
    LEI, TH
    SEWCHAND, W
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING IV, PTS 1-3, 1989, 1199 : 1373 - 1380
  • [28] Model-based segmentation of brain tissue and tumor
    Gerig, G
    Moon, N
    Ho, S
    Bullitt, E
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1071 - 1071
  • [29] A formalism for model-based spatial planning
    Glasgow, J
    SPATIAL INFORMATION THEORY: A THEORETICAL BASIS FOR GIS, 1995, 988 : 501 - 518
  • [30] Multiresolution, model-based segmentation of MR angiograms
    Summers, PE
    Bhalerao, AH
    Hawkes, DJ
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 1997, 7 (06) : 950 - 957